skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Biological Photophysics to Map the Excited‐State Topology of Molecular Photosensitizers for Photodynamic Therapy
Abstract This study employs TLD1433, a RuII‐based photodynamic therapy (PDT) agent in human clinical trials, as a benchmark to establish protocols for studying the excited‐state dynamics of photosensitizers (PSs)in cellulo, in the local environment provided by human cancer cells. Very little is known about the excited‐state properties of any PS in live cells, and for TLD1433, it isterra incognita. This contribution targets a general problem in phototherapy, which is how to interrogate the light‐triggered, function‐determining processes of the PSs in the relevant biological environment, and establishes methodological advances to study the ultrafast photoinduced processes for TLD1433 when taken up by MCF7 cells. We generalize the methodological developments and results in terms of molecular physics by applying them to TLD1433’s analogue TLD1633, making this study a benchmark to investigate the excited‐state dynamics of phototoxic compounds in the complex biological environment.  more » « less
Award ID(s):
2102459
PAR ID:
10402555
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
17
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)‐based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)‐based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications. 
    more » « less
  2. Abstract Efficient heterogeneous photosensitizing materials require both large accessible surface areas and excitons of suitable energies and with well‐defined spin structures. Confinement of the tetracationic cyclophane (ExBox4+) within a nonporous anionic polystyrene sulfonate (PSS) matrix leads to a surface area increase of up to 225 m2g−1in ExBox•PSS. Efficient intersystem crossing is achieved by combining the spin‐orbit coupling associated to Br heavy atoms in 1,3,5,8‐tetrabromopyrene (TBP), and the photoinduced electron transfer in a TBP⊂ExBox4+supramolecular dyad. The TBP⊂ExBox4+complex displays a charge transfer band at 450 nm and an exciplex emission at 520 nm, indicating the formation of new mixed‐electronic states. The lowest triplet state (T1, 1.89 eV) is localized on the TBP and is close in energy with the charge separated state (CT, 2.14 eV). The homogeneous and heterogeneous photocatalytic activities of the TBP⊂ExBox4+, for the elimination of a sulfur mustard simulant, has proved to be significantly more efficient than TBP and ExBox+4, confirming the importance of the newly formed excited‐state manifold in TBP⊂ExBox4+for the population of the low‐lying T1state. The high stability, facile preparation, and high performance of the TBP⊂ExBox•PSS nanocomposites augur well for the future development of new supramolecular heterogeneous photosensitizers using host–guest chemistry. 
    more » « less
  3. Abstract 2’‐Deoxy‐5‐formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time‐resolved mid‐IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM‐TD‐DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine‐to‐formyl charge‐transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark1nπ* state with a lifetime of ∼3 ps. CT‐induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non‐radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited‐state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands. 
    more » « less
  4. Heavy-atom-free photosensitizers (HAF-PSs) have emerged as a new class of photosensitizers aiming to broaden their applicability and versatility across various fields of the photodynamic therapy of cancers. The strategy involves replacing the exocyclic oxygen atoms of the carbonyl groups of established biocompatible organic fluorophores with sulfur, thereby bathochromically shifting their absorption spectra and enhancing their intersystem crossing efficiencies. Despite these advancements, the photophysical attributes and electronic relaxation mechanisms of many of these HAF-PSs remain inadequately elucidated. In this study, we investigate the excited state dynamics and photochemical properties of two promising HAF-PSs, thio-coumarin and thio-acridone. Employing a combination of steady-state and time-resolved techniques from femtoseconds to microseconds, coupled with quantum chemical calculations, we unravel the electronic relaxation mechanisms that give rise to the efficient population of long-lived and reactive triplet states in these HAF-PSs. 
    more » « less
  5. Abstract Attosecond probing of core-level electronic transitions provides a sensitive tool for studying valence molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy to follow the valence dynamics of strong-field initiated processes in methyl bromide. By probing the 3dcore-to-valence transition, we resolve the strong field excitation and ensuing fragmentation of the neutral σ* excited states of methyl bromide. The results provide a clear signature of the non-adiabatic passage of the excited state wavepacket through a conical intersection. We additionally observe competing, strong field initiated processes arising in both the ground state and ionized molecule corresponding to vibrational and spin-orbit motion, respectively. The demonstrated ability to resolve simultaneous dynamics with few-femtosecond resolution presents a clear path forward in the implementation of attosecond XUV spectroscopy as a general tool for probing competing and complex molecular phenomena with unmatched temporal resolution. 
    more » « less