Abstract Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)‐based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)‐based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.
more »
« less
This content will become publicly available on November 27, 2025
Electronic relaxation pathways in thio-acridone and thio-coumarin: two heavy-atom-free photosensitizers absorbing visible light
Heavy-atom-free photosensitizers (HAF-PSs) have emerged as a new class of photosensitizers aiming to broaden their applicability and versatility across various fields of the photodynamic therapy of cancers. The strategy involves replacing the exocyclic oxygen atoms of the carbonyl groups of established biocompatible organic fluorophores with sulfur, thereby bathochromically shifting their absorption spectra and enhancing their intersystem crossing efficiencies. Despite these advancements, the photophysical attributes and electronic relaxation mechanisms of many of these HAF-PSs remain inadequately elucidated. In this study, we investigate the excited state dynamics and photochemical properties of two promising HAF-PSs, thio-coumarin and thio-acridone. Employing a combination of steady-state and time-resolved techniques from femtoseconds to microseconds, coupled with quantum chemical calculations, we unravel the electronic relaxation mechanisms that give rise to the efficient population of long-lived and reactive triplet states in these HAF-PSs.
more »
« less
- Award ID(s):
- 2246805
- PAR ID:
- 10595998
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 26
- Issue:
- 46
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 28980 to 28991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Efficient heterogeneous photosensitizing materials require both large accessible surface areas and excitons of suitable energies and with well‐defined spin structures. Confinement of the tetracationic cyclophane (ExBox4+) within a nonporous anionic polystyrene sulfonate (PSS) matrix leads to a surface area increase of up to 225 m2g−1in ExBox•PSS. Efficient intersystem crossing is achieved by combining the spin‐orbit coupling associated to Br heavy atoms in 1,3,5,8‐tetrabromopyrene (TBP), and the photoinduced electron transfer in a TBP⊂ExBox4+supramolecular dyad. The TBP⊂ExBox4+complex displays a charge transfer band at 450 nm and an exciplex emission at 520 nm, indicating the formation of new mixed‐electronic states. The lowest triplet state (T1, 1.89 eV) is localized on the TBP and is close in energy with the charge separated state (CT, 2.14 eV). The homogeneous and heterogeneous photocatalytic activities of the TBP⊂ExBox4+, for the elimination of a sulfur mustard simulant, has proved to be significantly more efficient than TBP and ExBox+4, confirming the importance of the newly formed excited‐state manifold in TBP⊂ExBox4+for the population of the low‐lying T1state. The high stability, facile preparation, and high performance of the TBP⊂ExBox•PSS nanocomposites augur well for the future development of new supramolecular heterogeneous photosensitizers using host–guest chemistry.more » « less
-
Abstract This study employs TLD1433, a RuII‐based photodynamic therapy (PDT) agent in human clinical trials, as a benchmark to establish protocols for studying the excited‐state dynamics of photosensitizers (PSs)in cellulo, in the local environment provided by human cancer cells. Very little is known about the excited‐state properties of any PS in live cells, and for TLD1433, it isterra incognita. This contribution targets a general problem in phototherapy, which is how to interrogate the light‐triggered, function‐determining processes of the PSs in the relevant biological environment, and establishes methodological advances to study the ultrafast photoinduced processes for TLD1433 when taken up by MCF7 cells. We generalize the methodological developments and results in terms of molecular physics by applying them to TLD1433’s analogue TLD1633, making this study a benchmark to investigate the excited‐state dynamics of phototoxic compounds in the complex biological environment.more » « less
-
Site-selected sulfur-substituted nucleobases are a class of all organic, heavy-atom-free photosensitizers for photodynamic therapy applications that exhibit excellent photophysical properties such as strong absorption in the ultraviolet-A region of the electromagnetic spectrum, near-unity triplet yields, and a high yield of singlet oxygen generation. Recent investigations on doubly thionated nucleobases, 2,4-dithiothymine, 2,4-dithiouracil, and 2,6-dithiopurine, demonstrated that these set of dithionated nucleobases outperform the photodynamic efficacy exhibit by 4-thiothymidine–the most widely studied singly substituted thiobase to date. Out of the three dithionated nucleobases, 2,6-dithiopurine was shown to be the most effective, exhibiting inhibition of cell proliferation of up to 63% when combined with a low UVA dose of 5 J cm −2 . In this study, we elucidated the electronic relaxation pathways leading to the population of the reactive triplet state of 2,6-dithiopurine. 2,6-Dithiopurine populates the triplet manifold in less than 150 fs, reaching the nπ* triplet state minimum within a lifetime of 280 ± 50 fs. Subsequently, the population in the nπ* triplet state minimum internally converts to the long-lived ππ* triplet state within a lifetime of 3 ± 1 ps. The relatively slow internal conversion lifetime is associated with major conformational relaxation in going from the nπ* to ππ* triplet state minimum. A unity triplet yield of 1.0 ± 0.1 is measured.more » « less
-
The synthesis, separation, and characterization of 1,6-, 1,7-, and 1,6,7- derivatives of dodecylthio–N,N’– (2,4–diisopropylphenyl)-3,4,9,10-perylenetetracarboxylic diimide are reported. The three derivatives display noticeable differences in their electronic absorption and emission properties, with a bathochromic shift in spectral maxima from 1,6–Thio–PDI, to 1,7–Thio–PDI, to 1,6,7–Thio–PDI. The 1,7–Thio–PDI derivative had the highest fluorescence quantum yield and longest fluorescence lifetime in toluene (ΦF = 0.85, τF = 8.3 ns), followed by 1,6–Thio–PDI (ΦF = 0.54, τF = 6.6 ns) and 1,6,7–Thio–PDI (ΦF = 0.16, τF = 4.4 ns). The difference in dipole moment between the ground and excited states were estimated by the Lippert-Mataga analysis of solvent dependent absorption and emission properties and ranged from Δμ = 7.1 Debye for 1,6,7–Thio–PDI to 8.3 Debye for 1,6–Thio–PDI. These measurements were supported by time–dependent density functional theory calculations, which helped interpret the differences in absorption spectra. Cyclic voltammetry showed minor differences in the reduction potentials for the singly and doubly reduced states. The absorption spectra of the singly and doubly reduced states are also reported.more » « less
An official website of the United States government
