skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Testlet Diagnostic Classification Model with Attribute Hierarchies
In this article, a testlet hierarchical diagnostic classification model (TH-DCM) was introduced to take both attribute hierarchies and item bundles into account. The expectation-maximization algorithm with an analytic dimension reduction technique was used for parameter estimation. A simulation study was conducted to assess the parameter recovery of the proposed model under varied conditions, and to compare TH-DCM with testlet higher-order CDM (THO-DCM; Hansen, M. (2013). Hierarchical item response models for cognitive diagnosis (Unpublished doctoral dissertation). UCLA; Zhan, P., Li, X., Wang, W.-C., Bian, Y., & Wang, L. (2015). The multidimensional testlet-effect cognitive diagnostic models. Acta Psychologica Sinica, 47(5), 689. https://doi.org/10.3724/SP.J.1041.2015.00689 ). Results showed that (1) ignoring large testlet effects worsened parameter recovery, (2) DCMs assuming equal testlet effects within each testlet performed as well as the testlet model assuming unequal testlet effects under most conditions, (3) misspecifications in joint attribute distribution had an differential impact on parameter recovery, and (4) THO-DCM seems to be a robust alternative to TH-DCM under some hierarchical structures. A set of real data was also analyzed for illustration.  more » « less
Award ID(s):
2150601
PAR ID:
10402587
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Applied Psychological Measurement
Volume:
47
Issue:
3
ISSN:
0146-6216
Format(s):
Medium: X Size: p. 183-199
Size(s):
p. 183-199
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Online calibration estimates new item parameters alongside previously calibrated items, supporting efficient item replenishment. However, most existing online calibration procedures for Cognitive Diagnostic Computerized Adaptive Testing (CD‐CAT) lack mechanisms to ensure content balance during live testing. This limitation can lead to uneven content coverage, potentially undermining the alignment with instructional goals. This research extends the current calibration framework by integrating a two‐phase test design with a content‐balancing item selection method into the online calibration procedure. Simulation studies evaluated item parameter recovery and attribute profile estimation accuracy under the proposed procedure. Results indicated that the developed procedure yielded more accurate new item parameter estimates. The procedure also maintained content representativeness under both balanced and unbalanced constraints. Attribute profile estimation was sensitive to item parameter values. Accuracy declined when items had larger parameter values. Calibration improved with larger sample sizes and smaller parameter values. Longer test lengths contributed more to profile estimation than to new item calibration. These findings highlight design trade‐offs in adaptive item replenishment and suggest new directions for hybrid calibration methods. 
    more » « less
  2. null (Ed.)
    Selected response items and constructed response (CR) items are often found in the same test. Conventional psychometric models for these two types of items typically focus on using the scores for correctness of the responses. Recent research suggests, however, that more information may be available from the CR items than just scores for correctness. In this study, we describe an approach in which a statistical topic model along with a diagnostic classification model (DCM) was applied to a mixed item format formative test of English and Language Arts. The DCM was used to estimate students’ mastery status of reading skills. These mastery statuses were then included in a topic model as covariates to predict students’ use of each of the latent topics in their written answers to a CR item. This approach enabled investigation of the effects of mastery status of reading skills on writing patterns. Results indicated that one of the skills, Integration of Knowledge and Ideas, helped detect and explain students’ writing patterns with respect to students’ use of individual topics. 
    more » « less
  3. null (Ed.)
    Results of a comprehensive simulation study are reported investigating the effects of sample size, test length, number of attributes and base rate of mastery on item parameter recovery and classification accuracy of four DCMs (i.e., C-RUM, DINA, DINO, and LCDMREDUCED). Effects were evaluated using bias and RMSE computed between true (i.e., generating) parameters and estimated parameters. Effects of simulated factors on attribute assignment were also evaluated using the percentage of classification accuracy. More precise estimates of item parameters were obtained with larger sample size and longer test length. Recovery of item parameters decreased as the number of attributes increased from three to five but base rate of mastery had a varying effect on the item recovery. Item parameter and classification accuracy were higher for DINA and DINO models. 
    more » « less
  4. Attribute hierarchy, the underlying prerequisite relationship among attributes, plays an important role in applying cognitive diagnosis models (CDM) for designing efficient cognitive diagnostic assessments. However, there are limited statistical tools to directly estimate attribute hierarchy from response data. In this study, we proposed a Bayesian formulation for attribute hierarchy within CDM framework and developed an efficient Metropolis within Gibbs algorithm to estimate the underlying hierarchy along with the specified CDM parameters. Our proposed estimation method is flexible and can be adapted to a general class of CDMs. We demonstrated our proposed method via a simulation study, and the results from which show that the proposed method can fully recover or estimate at least a subgraph of the underlying structure across various conditions under a specified CDM model. The real data application indicates the potential of learning attribute structure from data using our algorithm and validating the existing attribute hierarchy specified by content experts. 
    more » « less
  5. Recent studies show increasing interest in using process data (e.g., response time, response actions) to enhance measurement accuracy for respondents’ latent traits. Yet, few have explored the possibility of incorporating process information into cognitive diagnostic models (CDMs). This study proposes a novel CDM approach that utilizes a four-component joint modeling approach with response action sequences (i.e., similarity and efficiency), response time, and item responses. We employed the Markov Chain Monte Carlo method for parameter estimation and evaluated the performance of the proposed model using both an empirical study and two simulation studies. The results suggest that the process data can improve respondents’ classification accuracy under varied conditions and support the interpretation of the association between process and response data. 
    more » « less