skip to main content


Title: A Divide & Concur Approach to Collaborative Goal Modeling with Merge in Early-RE
Goal modeling enables the elicitation of stakeholders’ intentionality in the earlier stages of a project. Often, approaches are limited by the effort required to create an initial goal model. In this paper, we investigate the problem of model merging for Tropos goal models. Specifically, we propose a formal approach to the problem of automatically merging the attributes of intentions and actors, once these elements have been matched. Additionally, recent approaches have investigated answering questions about future evolutions of stakeholders’ projects with goal models. In this work we consider both static models, as well as those with timing information, using the principles of gullibility, contradiction, and consensus. We study our implementation and validate the merge operation on a variety of models from the literature.  more » « less
Award ID(s):
2104732
NSF-PAR ID:
10402610
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2022 IEEE 30th International Requirements Engineering Conference (RE)
Page Range / eLocation ID:
14 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent approaches have investigated assisting users in making early trade-off decisions when the future evolution of project elements is uncertain. These approaches have demonstrated promise in their analytical capabilities; yet, stakeholders have expressed concerns about the readability of the models and resulting analysis, which builds upon Tropos. Tropos is based on formal semantics enabling automated analysis; however, this creates a problem of interpreting evidence pairs. The aim of our broader research project is to improve the process of model comprehension and decision making by improving how analysts interpret and make decisions. We extend and evaluate a prior approach, called EVO, which uses color to visualize evidence pairs. In this scientific evaluation paper, we explore the effectiveness and usability of EVO. We conduct an experiment (n=32) to measure any effect of using colors to represent evidence pairs. We find that with minimal training, untrained modelers were able to use the color visualization for decision making. The visualization significantly improves the speed of model comprehension and users found it helpful. 
    more » « less
  2. Researchers, evaluators and designers from an array of academic disciplines and industry sectors are turning to participatory approaches as they seek to understand and address complex social problems. We refer to participatory approaches that collaboratively engage/ partner with stakeholders in knowledge creation/problem solving for action/social change outcomes as collaborative change research, evaluation and design (CCRED). We further frame CCRED practitioners by their desire to move beyond knowledge creation for its own sake to implementation of new knowledge as a tool for social change. In March and May of 2018, we conducted a literature search of multiple discipline-specific databases seeking collaborative, change-oriented scholarly publications. The search was limited to include peerreviewed journal articles, with English language abstracts available, published in the last five years. The search resulted in 526 citations, 236 of which met inclusion criteria. Though the search was limited to English abstracts, all major geographic regions (North America, Europe, Latin America/Caribbean, APAC, Africa and the Middle East) were represented within the results, although many articles did not state a specific region. Of those identified, most studies were located in North America, with the Middle East having only one identified study. We followed a qualitative thematic synthesis process to examine the abstracts of peer-reviewed articles to identify practices that transcend individual disciplines, sectors and contexts to achieve collaborative change. We surveyed the terminology used to describe CCRED, setting, content/topic of study, type of collaboration, and related benefits/outcomes in order to discern the words used to designate collaboration, the frameworks, tools and methods employed, and the presence of action, evaluation or outcomes. Forty-three percent of the reviewed articles fell broadly within the social sciences, followed by 26 percent in education and 25 percent in health/medicine. In terms of participants and/ or collaborators in the articles reviewed, the vast majority of the 236 articles (86%) described participants, that is, those who the research was about or from whom data was collected. In contrast to participants, partners/collaborators (n=32; 14%) were individuals or groups who participated in the design or implementation of the collaborative change effort described. In terms of the goal for collaboration and/or for doing the work, the most frequently used terminology related to some aspect of engagement and empowerment. Common descriptors for the work itself were ‘social change’ (n=74; 31%), ‘action’ (n=33; 14%), ‘collaborative or participatory research/practice’ (n=13; 6%), ‘transformation’ (n=13; 6%) and ‘community engagement’ (n=10; 4%). Of the 236 articles that mentioned a specific framework or approach, the three most common were some variation of Participatory Action Research (n=30; 50%), Action Research (n=40; 16.9%) or Community-Based Participatory Research (n=17; 7.2%). Approximately a third of the 236 articles did not mention a specific method or tool in the abstract. The most commonly cited method/tool (n=30; 12.7%) was some variation of an arts-based method followed by interviews (n=18; 7.6%), case study (n=16; 6.7%), or an ethnographic-related method (n=14; 5.9%). While some articles implied action or change, only 14 of the 236 articles (6%) stated a specific action or outcome. Most often, the changes described were: the creation or modification of a model, method, process, framework or protocol (n=9; 4%), quality improvement, policy change and social change (n=8; 3%), or modifications to education/training methods and materials (n=5; 2%). The infrequent use of collaboration as a descriptor of partner engagement, coupled with few reported findings of measurable change, raises questions about the nature of CCRED. It appears that conducting CCRED is as complex an undertaking as the problems that the work is attempting to address. 
    more » « less
  3. Simulink is a leading modelling language and data-flow environment for Model-Driven Engineering, prevalent in both industrial and educational contexts. Accordingly, there are many standalone publicly-available tools for analyzing and using Simulink models for various purposes. However, Simulink's model format has evolved to a new proprietary format, rendering many of these tools useless. To combat this, we devise an approach, SLX2MDL, that applies transformation rules based on Simulink syntax to transform the new SLX format models to models conforming to the legacy MDL syntax. The resulting approach enables backwards compatibility with existing tools, including previous versions of Simulink itself. Our 4-phase process includes analysis and extraction, merging and transformation of the common elements, transformation of the specialized Stateflow elements, and output production. We position this problem within the literature by comparing and contrasting similar, but insufficient, related approaches. We evaluate and validate SLX2MDL by applying it to 543 standard and publicly available models from an established and curated corpus. Our evaluation demonstrates 100% validity and correctness on these models based on functional equivalence. Further, we evaluate our approach's performance and find it consistent and scalable as model size and complexity increases. 
    more » « less
  4. Models produced by machine learning, particularly deep neural networks, are state-of-the-art for many machine learning tasks and demonstrate very high prediction accuracy. Unfortunately, these models are also very brittle and vulnerable to specially crafted adversarial examples. Recent results have shown that accuracy of these models can be reduced from close to hundred percent to below 5\% using adversarial examples. This brittleness of deep neural networks makes it challenging to deploy these learning models in security-critical areas where adversarial activity is expected, and cannot be ignored. A number of methods have been recently proposed to craft more effective and generalizable attacks on neural networks along with competing efforts to improve robustness of these learning models. But the current approaches to make machine learning techniques more resilient fall short of their goal. Further, the succession of new adversarial attacks against proposed methods to increase neural network robustness raises doubts about a foolproof approach to robustify machine learning models against all possible adversarial attacks. In this paper, we consider the problem of detecting adversarial examples. This would help identify when the learning models cannot be trusted without attempting to repair the models or make them robust to adversarial attacks. This goal of finding limitations of the learning model presents a more tractable approach to protecting against adversarial attacks. Our approach is based on identifying a low dimensional manifold in which the training samples lie, and then using the distance of a new observation from this manifold to identify whether this data point is adversarial or not. Our empirical study demonstrates that adversarial examples not only lie farther away from the data manifold, but this distance from manifold of the adversarial examples increases with the attack confidence. Thus, adversarial examples that are likely to result into incorrect prediction by the machine learning model is also easier to detect by our approach. This is a first step towards formulating a novel approach based on computational geometry that can identify the limiting boundaries of a machine learning model, and detect adversarial attacks. 
    more » « less
  5. Empirical risk minimization (ERM) is known to be non-robust in practice to distributional shift where the training and the test distributions are different. A suite of approaches, such as importance weighting, and variants of distributionally robust optimization (DRO), have been proposed to solve this problem. But a line of recent work has empirically shown that these approaches do not significantly improve over ERM in real applications with distribution shift. The goal of this work is to obtain a comprehensive theoretical understanding of this intriguing phenomenon. We first posit the class of Generalized Reweighting (GRW) algorithms, as a broad category of approaches that iteratively update model parameters based on iterative reweighting of the training samples. We show that when overparameterized models are trained under GRW, the resulting models are close to that obtained by ERM. We also show that adding small regularization which does not greatly affect the empirical training accuracy does not help. Together, our results show that a broad category of what we term GRW approaches are not able to achieve distributionally robust generalization. Our work thus has the following sobering takeaway: to make progress towards distributionally robust generalization, we either have to develop non-GRW approaches, or perhaps devise novel classification/regression loss functions that are adapted to GRW approaches. 
    more » « less