skip to main content


Title: Two-dimensional glass transition–like behavior of Janus particle–laden interface
Abstract

Understanding the interactive behavior of Janus particles (JPs) is a growing field of research. The enhancement in binding energy, in comparison to homogenous particles, and the dual characteristic of JPs open up new possibilities for novel applications. In many such applications, interfacial materials become subjected to flows that produce dilational and shear stresses. Therefore, it is important to understand the impact that the Janus character brings to interfaces. In this work, we study the microstructure of two-dimensional (2D) JP monolayers formed at the air–water interface and examine the shear viscoelasticity with an interface rheometer that was adapted for in situ surface pressure control via a Langmuir trough. We extend concepts from bulk rheology to data obtained from interfacial rheology as a tool to understand and predict the monolayer’s viscoelastic behavior. Finally, by calculating the time relaxation spectrum from the measured 2D dynamic moduli, we conclude that a phenomenon similar to glass transition is taking place by analogy.

 
more » « less
Award ID(s):
1934513
NSF-PAR ID:
10402682
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Rheologica Acta
Volume:
62
Issue:
4
ISSN:
0035-4511
Page Range / eLocation ID:
p. 239-251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics. 
    more » « less
  2. Abstract

    Studying the behavior of anisotropic particles at fluid interfaces is a rapidly expanding field, as understanding how the introduced anisotropy affects the resulting properties is essential in the engineering of interfacial systems. Surface anisotropic particles, also known as Janus particles (JPs), offer new possibilities for novel applications due to their amphiphilicity and stronger binding to fluid interfaces compared to homogeneous particles. Introducing surface anisotropy creates complexity as the orientation of interfacially bound particles affects interparticle interactions, a contributing factor to the microstructure formation. In this work, we have investigated the microstructure of JP monolayers formed at the air–water interface using particles with different degrees of amphiphilicity and examined the response of the networks to applied compressions. Our findings demonstrate that JPs amphiphilicity is a crucial factor governing their orientation at the interface, which in turn dictates the complexity of the capillary interactions present and the mechanical properties of the ensuing networks.

     
    more » « less
  3. Abstract

    It has been shown both theoretically and experimentally that amphiphilic Janus particles are the most effective solid surfactants to stabilize interfaces. In most cases, the Janus particles investigated have uniform morphologies with Janus boundaries dividing the particle into halves. However, there are many examples of Janus particles where the hydrophilic and hydrophobic domains are not equally distributed. The effects of this uneven domain distribution on the mechanism and kinetics of Janus particle assembly, and final equilibrium state are not well‐understood. Dynamic pendant drop tensiometry offers a means to probe both the equilibrium assembly and the kinetics and mechanism of assembly. Here, the interfacial kinetics and assembly of spherical anisotropic Janus particles are investigated using dynamic pendant drop tensiometry. Systematic studies quantifying the time‐dependent interfacial behavior as a function of Janus particle morphology, chemical composition, particle concentration, and NaOH and HCl concentration are performed. These studies shed light on the assembly mechanism of more complex Janus particle morphologies and highlight their effectiveness as interface stabilizers.

     
    more » « less
  4. Abstract

    Liquid–liquid or liquid–air interfaces provide interesting environments to study colloids and are ubiquitous in nature and industry, as well as relevant in applications involving emulsions and foams. They present a particularly intriguing environment for studying active particles which exhibit a host of phenomena not seen in passive systems. Active particles can also provide on‐demand controllability that greatly expands their use in future applications. However, research on active particles at interfaces is relatively rare compared to those at solid surfaces or in the bulk. Here, magnetically steerable active colloids at liquid–air interfaces that self‐propel by bubble production via the catalytic decomposition of chemical fuel in the liquid medium is presented. The bubble formation and dynamics of “patchy” colloids with a patch of catalytic coating on their surface is investigated and compared to more traditional Janus colloids with a hemispherical coating. The patchy colloids tend to produce smaller bubbles and undergo smoother motion which makes them beneficial for applications such as precise micro‐manipulation. This is demonstrated by manipulating and assembling patterns of passive spheres on a substrate as well as at an air–liquid interface. The propulsion and bubble formation of both the Janus and patchy colloids is characterized and it is found that previously proposed theories are insufficient to fully describe their motion and bubble bursting mechanism. Additionally, the colloids, which reside at the air–liquid interface, demonstrate novel interfacial positive gravitaxis towards the droplet edges which is attributed to a torque resulting from opposing downward and buoyant forces on the colloids.

     
    more » « less
  5. Hydrogels consist of a cross-linked polymer matrix imbibed with a solvent such as water at volume fractions that can exceed 90%. They are important in many scientific and engineering applications due to their tunable physiochemical properties, biocompatibility, and ultralow friction. Their multiphase structure leads to a complex interfacial rheology, yet a detailed, microscopic understanding of hydrogel friction is still emerging. Using a custom-built tribometer, here we identify three distinct regimes of frictional behavior for polyacrylic acid (PAA), polyacrylamide (PAAm), and agarose hydrogel spheres on smooth surfaces. We find that at low velocities, friction is controlled by hydrodynamic flow through the porous hydrogel network and is inversely proportional to the characteristic pore size. At high velocities, a mesoscopic, lubricating liquid film forms between the gel and surface that obeys elastohydrodynamic theory. Between these regimes, the frictional force decreases by an order of magnitude and displays slow relaxation over several minutes. Our results can be interpreted as an interfacial shear thinning of the polymers with an increasing relaxation time due to the confinement of entanglements. This transition can be tuned by varying the solvent salt concentration, solvent viscosity, and sliding geometry at the interface.

     
    more » « less