skip to main content


Title: Janus Particles at Fluid Interfaces: Stability and Interfacial Rheology
The use of the Janus motif in colloidal particles, i.e., anisotropic surface properties on opposite faces, has gained significant attention in the bottom-up assembly of novel functional structures, design of active nanomotors, biological sensing and imaging, and polymer blend compatibilization. This review is focused on the behavior of Janus particles in interfacial systems, such as particle-stabilized (i.e., Pickering) emulsions and foams, where stabilization is achieved through the binding of particles to fluid interfaces. In many such applications, the interface could be subjected to deformations, producing compression and shear stresses. Besides the physicochemical properties of the particle, their behavior under flow will also impact the performance of the resulting system. This review article provides a synopsis of interfacial stability and rheology in particle-laden interfaces to highlight the role of the Janus motif, and how particle anisotropy affects interfacial mechanics.  more » « less
Award ID(s):
1934513
NSF-PAR ID:
10251115
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
11
Issue:
2
ISSN:
2079-4991
Page Range / eLocation ID:
374
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It has been shown both theoretically and experimentally that amphiphilic Janus particles are the most effective solid surfactants to stabilize interfaces. In most cases, the Janus particles investigated have uniform morphologies with Janus boundaries dividing the particle into halves. However, there are many examples of Janus particles where the hydrophilic and hydrophobic domains are not equally distributed. The effects of this uneven domain distribution on the mechanism and kinetics of Janus particle assembly, and final equilibrium state are not well‐understood. Dynamic pendant drop tensiometry offers a means to probe both the equilibrium assembly and the kinetics and mechanism of assembly. Here, the interfacial kinetics and assembly of spherical anisotropic Janus particles are investigated using dynamic pendant drop tensiometry. Systematic studies quantifying the time‐dependent interfacial behavior as a function of Janus particle morphology, chemical composition, particle concentration, and NaOH and HCl concentration are performed. These studies shed light on the assembly mechanism of more complex Janus particle morphologies and highlight their effectiveness as interface stabilizers.

     
    more » « less
  2. Abstract

    Studying the behavior of anisotropic particles at fluid interfaces is a rapidly expanding field, as understanding how the introduced anisotropy affects the resulting properties is essential in the engineering of interfacial systems. Surface anisotropic particles, also known as Janus particles (JPs), offer new possibilities for novel applications due to their amphiphilicity and stronger binding to fluid interfaces compared to homogeneous particles. Introducing surface anisotropy creates complexity as the orientation of interfacially bound particles affects interparticle interactions, a contributing factor to the microstructure formation. In this work, we have investigated the microstructure of JP monolayers formed at the air–water interface using particles with different degrees of amphiphilicity and examined the response of the networks to applied compressions. Our findings demonstrate that JPs amphiphilicity is a crucial factor governing their orientation at the interface, which in turn dictates the complexity of the capillary interactions present and the mechanical properties of the ensuing networks.

     
    more » « less
  3. Silica nanoparticles find utility in different roles within the commercial domain. They are either employed in bulk within pharmaceutical formulations or at interfaces in anti-coalescing agents. Thus, studying the particle attributes contributing to the characteristics of silica particle-laden interfaces is of interest. The present work highlights the impact of particle size (i.e., 250 nm vs. 1000 nm) on the rheological properties of interfacial networks formed by hydrophobically modified silica nanoparticles at the air–water interface. The particle surface properties were examined using mobility measurements, Langmuir trough studies, and interfacial rheology techniques. Optical microscopy imaging along with Langmuir trough studies revealed the microstructure associated with various surface pressures and corresponding surface coverages (ϕ). The 1000 nm silica particle networks gave rise to a higher surface pressure at the same coverage compared to 250 nm particles on account of the stronger attractive capillary interactions. Interfacial rheological characterization revealed that networks with 1000 nm particles possess higher surface modulus and yield stress in comparison to the network obtained with 250 nm particles at the same surface pressure. These findings highlight the effect of particle size on the rheological characteristics of particle-laden interfaces, which is of importance in determining the stability and flow response of formulations comprising particle-stabilized emulsions and foams. 
    more » « less
  4. At the appropriate length scales, capillary forces exerted by a liquid in contact with a compliant solid can cause the solid's deformation. Capillary forces are also able to align particles with discrete wettabilities – or Janus particles – at liquid interfaces. Their amphiphilic properties enable Janus particles to orient themselves at liquid interfaces such that both of their surfaces are facing their preferred fluid. However, it is unclear how to spontaneously obtain varying degrees of rotational alignment. Here we extend ideas of elasto-capillarity to modulate rotational alignment by connecting amphiphilic Janus cylinders in an antisymmetric configuration. As the Janus cylinders rotate they cause a twisting deformation of rod. We develop both a mathematical model and a physical macroscale setup to relate the angle of twist to the elastic and interfacial properties, which can be used to tune the extent of alignment of Janus particles at air–water interfaces. We additionally extend our analysis to calculate the twist profile on a compliant element with a distributed capillary torque. 
    more » « less
  5. Abstract Interfacial rheology studies were conducted to establish a connection between the rheological characteristics of particle-laden interfaces and the stability of Pickering foams. The behavior of foams stabilized with fumed and spherical colloidal silica particles was investigated, focusing on foam properties such as bubble microstructure and liquid content. Compared to a sodium dodecyl sulfate-stabilized foam, Pickering foams exhibited a notable reduction in bubble coarsening. Drop shape tensiometry measurements on particle-coated interfaces indicated that the Gibbs stability criterion was satisfied for both particle types at various surface coverages, supporting the observed arrested bubble coarsening in particle-stabilized foams. However, although the overall foam height was similar for both particle types, foams stabilized with fumed silica particles demonstrated a higher resistance to liquid drainage. This difference was attributed to the higher yield strain of interfacial networks formed by fumed silica particles, as compared to those formed by spherical colloidal particles at similar surface pressures. Our findings highlight that while both particles can generate long-lasting foams, the resulting Pickering foams may exhibit variations in microstructure, liquid content, and resistance to destabilization mechanisms, stemming from the respective interfacial rheological properties in each case. 
    more » « less