skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Triangular quantum photonic devices with integrated detectors in silicon carbide
Abstract Triangular cross-section silicon carbide (SiC) photonic devices have been studied as an efficient and scalable route for integration of color centers into quantum hardware. In this work, we explore efficient collection and detection of color center emission in a triangular cross-section SiC waveguide by introducing a photonic crystal mirror on its one side and a superconducting nanowire single photon detector (SNSPD) on the other. Our modeled triangular cross-section devices with a randomly positioned emitter have a maximum coupling efficiency of 89% into the desired optical mode and a high coupling efficiency ( > 75%) in more than half of the configurations. For the first time, NbTiN thin films were sputtered on 4H-SiC and the electrical and optical properties of the thin films were measured. We found that the transport properties are similar to the case of NbTiN on SiO2substrates, while the extinction coefficient is up to 50% higher for 1680 nm wavelength. Finally, we performed finite-difference time-domain simulations of triangular cross-section waveguide integrated with an SNSPD to identify optimal nanowire geometries for efficient detection of light from transverse electric and transverse magnetic polarized modes.  more » « less
Award ID(s):
2047564
PAR ID:
10402683
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Materials for Quantum Technology
Volume:
3
Issue:
1
ISSN:
2633-4356
Page Range / eLocation ID:
Article No. 015004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Angle-etching fabrication produces state-of-the-art color center triangular nanophotonic devices. We uncover how the photonic band gap is formed in the triangular geometry and utilized for efficient detection from SiC waveguide into overlaid NbTiN detectors. 
    more » « less
  2. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly > 10    dB / facet ) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers. 
    more » « less
  3. A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ b b ¯ ) and charm quarks (H→$$ c\overline{c} $$ c c ¯ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ s = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ b b ¯ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ c c ¯ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ b b ¯ andH→$$ c\overline{c} $$ c c ¯ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κcb|) to be less than 3.6 at 95% confidence level. 
    more » « less
  4. Abstract The transverse momentum ($$p_{\textrm{T}}$$ p T ) differential production cross section of the promptly produced charm-strange baryon$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 (and its charge conjugate$$\overline{\mathrm {\Xi _{c}^{0}}}$$ Ξ c 0 ¯ ) is measured at midrapidity via its hadronic decay into$$\mathrm{\pi ^{+}}\Xi ^{-}$$ π + Ξ - in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 nuclear modification factor ($$R_{\textrm{pPb}}$$ R pPb ), calculated from the cross sections in pp and p–Pb collisions, is presented and compared with the$$R_{\textrm{pPb}}$$ R pPb of$$\mathrm {\Lambda _{c}^{+}}$$ Λ c + baryons. The ratios between the$$p_{\textrm{T}}$$ p T -differential production cross section of$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 baryons and those of$$\mathrm {D^0}$$ D 0 mesons and$$\mathrm {\Lambda _{c}^{+}}$$ Λ c + baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt$$\Xi ^0_\textrm{c}$$ Ξ c 0 baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p–Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The$$p_{\textrm{T}}$$ p T -integrated cross section of prompt$$\Xi ^0_\textrm{c}$$ Ξ c 0 -baryon production at midrapidity extrapolated down to$$p_{\textrm{T}}$$ p T = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p–Pb collisions at midrapidity. 
    more » « less
  5. Abstract The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ Te V . The analysis uses a data sample corresponding to a total integrated luminosity of 138$$\,\text {fb}^{-1}$$ fb - 1 collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The$$\hbox {W}+\hbox {c}$$ W + c production cross section and the cross section ratio$$R_\textrm{c}^{\pm }= \sigma ({\hbox {W}}^{+}+\bar{\text {c}})/\sigma (\hbox {W}^{-}+{\textrm{c}})$$ R c ± = σ ( W + + c ¯ ) / σ ( W - + c ) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in$$R_\textrm{c}^{\pm }= 0.950 \pm 0.005\,\text {(stat)} \pm 0.010 \,\text {(syst)} $$ R c ± = 0.950 ± 0.005 (stat) ± 0.010 (syst) . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics. 
    more » « less