skip to main content


Title: Colloidal synthesis of monodisperse trimetallic Pt–Fe–Ni nanocrystals and their enhanced electrochemical performances
Abstract Among the multi-metallic nanocatalysts, Pt-based alloy nanocrystals (NCs) have demonstrated promising performance in fuel cells and water electrolyzers. Herein, we demonstrate a facile colloidal synthesis of monodisperse trimetallic Pt–Fe–Ni alloy NCs through a co-reduction of metal precursors. The as-synthesized ternary NCs exhibit superior mass and specific activities toward oxygen reduction reaction (ORR), which are ∼2.8 and 5.6 times as high as those of the benchmark Pt/C catalyst, respectively. The ORR activity of the carbon-supported Pt–Fe–Ni nanocatalyst is persistently retained after the durability test. Owing to the incorporation of Fe and Ni atoms into the Pt lattice, the as-prepared trimetallic Pt-alloy electrocatalyst also manifestly enhances the electrochemical activity and durability toward the oxygen evolution reaction with a reduced overpotential when compared with that of the benchmark Pt/C (△ η = 0.20 V, at 10 mA cm −2 ). This synthetic strategy paves the way for improving the reactivity for a broad range of electrocatalytic applications.  more » « less
Award ID(s):
1808383
NSF-PAR ID:
10402781
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanotechnology
Volume:
34
Issue:
7
ISSN:
0957-4484
Page Range / eLocation ID:
075401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  2. Abstract

    The development of dual catalysts with high efficiency toward oxygen reduction and evolution reactions (ORR and OER) in acidic media is a significant challenge. Here an active and durable dual catalyst based upon cubic Pt39Ir10Pd11nanocages with an average edge length of 12.3 nm, porous walls as thin as 1.0 nm, and well‐defined {100} facets is reported. The trimetallic nanocages perform better than all the reported dual catalysts in acidic media, with a low ORR‐OER overpotential gap of only 704 mV at a Pt‐Ir‐Pd loading of 16.8 µgPt+Ir+Pdcm−2geo. For ORR at 0.9 V, when benchmarked against the commercial Pt/C and Pt‐Pd nanocages, the trimetallic nanocages exhibit an enhanced mass activity of 0.52 A mg−1Pt+Ir+Pd(about four and two times as high as those of the Pt/C and Pt‐Pd nanocages) and much improved durability. For OER, the trimetallic nanocages show a remarkable mass activity of 0.20 A mg−1Pt+Irat 1.53 V, which is 16.7 and 4.3 fold relative to those of the Pt/C and Pt‐Pd nanocages, respectively. These improvements can be ascribed to the highly open structure of the nanocages, and the possible electronic coupling between Ir and Pt atoms in the lattice.

     
    more » « less
  3. Abstract

    Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically orderedL10‐Pt–Ni–Co NPs are synthesized for the first time by employing a bifunctional core/shell Pt/NiCoOxprecursor, which could provide abundant O‐vacancies for facilitated Pt/Ni/Co atom diffusion and prevent NP sintering during thermal annealing. Further, Co doping is found to remarkably enhance the ferromagnetism (room temperature coercivity reaching 2.1 kOe) and the consequent chemical ordering ofL10‐Pt–Ni NPs. As a result, the best‐performing carbon supportedL10‐PtNi0.8Co0.2catalyst reveals a half‐wave potential (E1/2) of 0.951 V versus reversible hydrogen electrode in 0.1mHClO4with 23‐times enhancement in mass activity over the commercial Pt/C catalyst along with much improved stability. Density functional theory (DFT) calculations suggest that theL10‐PtNi0.8Co0.2core could tune the surface strain of the Pt shell toward optimized Pt–O binding energy and facilitated reaction rate, thereby improving the ORR electrocatalysis.

     
    more » « less
  4. Activity, cost, and durability are the trinity of catalysis research for the electrochemical oxygen reduction reaction (ORR). While studies towards increasing activity and reducing cost of ORR catalysts have been carried out extensively, much effort is needed in durability investigation of highly active ORR catalysts. In this work, we examined the stability of a trimetallic PtPdCu catalyst that has demonstrated high activity and incredible durability during ORR using density functional theory (DFT) based computations. Specifically, we studied the processes of dissolution/deposition and diffusion between the surface and inner layer of Cu species of Pt 20 Pd 20 Cu 60 catalysts at electrode potentials up to 1.2 V to understand their role towards stabilizing Pt 20 Pd 20 Cu 60 catalysts. The results show there is a dynamic Cu surface composition range that is dictated by the interplay of the four processes, dissolution, deposition, diffusion from the surface to inner layer, and diffusion from the inner layer to the surface of Cu species, in the stability and observed oscillation of lattice constants of Cu-rich PtPdCu nanoalloys. 
    more » « less
  5. This study demonstrates an atomic composition manipulation on Pt–Ni nano-octahedra to enhance their electrocatalytic performance. By selectively extracting Ni atoms from the {111} facets of the Pt–Ni nano-octahedra using gaseous carbon monoxide at an elevated temperature, a Pt-rich shell is formed, resulting in an ∼2 atomic layer Pt-skin. The surface-engineered octahedral nanocatalyst exhibits a significant enhancement in both mass activity (∼1.8-fold) and specific activity (∼2.2-fold) toward the oxygen reduction reaction compared with its unmodified counterpart. After 20,000 potential cycles of durability tests, the surface-etched Pt–Ni nano-octahedral sample shows a mass activity of 1.50 A/mgPt, exceeding the initial mass activity of the unetched counterpart (1.40 A/mgPt) and outperforming the benchmark Pt/C (0.18 A/mgPt) by a factor of 8. DFT calculations predict this improvement with the Pt surface layers and support these experimental observations. This surface-engineering protocol provides a promising strategy for developing novel electrocatalysts with improved catalytic features. 
    more » « less