skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid breakdown is elevated near the historical cores of a species' range
New species form when they become reproductively isolated. A classic model of speciation posits that derived mutations appear in isolated populations and reduce fitness when combined in hybrids. While these Bateson–Dobzhansky–Muller incompatibilities are known to accumulate as populations diverge over time, they may also reflect the amount of standing genetic variation within populations. We analysed the fitness of F 2 hybrids in crosses between 24 populations of a plant species ( Campanula americana ) with broad variation in standing genetic variation and genetic differentiation driven by post-glacial range expansions. Hybrid breakdown varied substantially and was strongest between populations near the historical cores of the species range where within-population genetic diversity was high. Nearly half of the variation in hybrid breakdown was predicted by the combined effects of standing genetic variation within populations, their pairwise genetic differentiation and differences in the climates they inhabit. Hybrid breakdown was enhanced between populations inhabiting distinct climates, likely reflecting local adaptation. Results support that the mutations causing hybrid breakdown, the raw material for speciation, are more common in long-inhabited areas of the species range. Genetic diversity harboured in refugial areas is thus an important source of incompatibilities critical to the speciation process.  more » « less
Award ID(s):
1457037
PAR ID:
10402801
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1971
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wahl, Lindi (Ed.)
    Dobzhansky and Muller proposed a general mechanism through which microevolution, the substitution of alleles within populations, can cause the evolution of reproductive isolation between populations and, therefore, macroevolution. As allopatric populations diverge, many combinations of alleles differing between them have not been tested by natural selection and may thus be incompatible. Such genetic incompatibilities often cause low fitness in hybrids between species. Furthermore, the number of incompatibilities grows with the genetic distance between diverging populations. However, what determines the rate and pattern of accumulation of incompatibilities remains unclear. We investigate this question by simulating evolution on holey fitness landscapes on which genetic incompatibilities can be identified unambiguously. We find that genetic incompatibilities accumulate more slowly among genetically robust populations and identify two determinants of the accumulation rate: recombination rate and population size. In large populations with abundant genetic variation, recombination selects for increased genetic robustness and, consequently, incompatibilities accumulate more slowly. In small populations, genetic drift interferes with this process and promotes the accumulation of genetic incompatibilities. Our results suggest a novel mechanism by which genetic drift promotes and recombination hinders speciation. 
    more » « less
  2. Abstract All mitochondrial-encoded proteins and RNAs function through interactions with nuclear-encoded proteins, which are critical for mitochondrial performance and eukaryotic fitness. Coevolution maintains inter-genomic (i.e., mitonuclear) compatibility within a taxon, but hybridization can disrupt coevolved interactions, resulting in hybrid breakdown. Thus, mitonuclear incompatibilities may be important mechanisms underlying reproductive isolation and, potentially, speciation. Here we utilize Pool-seq to assess the effects of mitochondrial genotype on nuclear allele frequencies in fast- and slow-developing reciprocal inter-population F2 hybrids between relatively low-divergence populations of the intertidal copepod Tigriopus californicus. We show that mitonuclear interactions lead to elevated frequencies of coevolved (i.e., maternal) nuclear alleles on two chromosomes in crosses between populations with 1.5% or 9.6% fixed differences in mitochondrial DNA nucleotide sequence. However, we also find evidence of excess mismatched (i.e., noncoevolved) alleles on three or four chromosomes per cross, respectively, and of allele frequency differences consistent with effects involving only nuclear loci (i.e., unaffected by mitochondrial genotype). Thus, our results for low-divergence crosses suggest an underlying role for mitonuclear interactions in variation in hybrid developmental rate, but despite substantial effects of mitonuclear coevolution on individual chromosomes, no clear bias favoring coevolved interactions overall. 
    more » « less
  3. Moyle, L (Ed.)
    Abstract The evolution of genomic incompatibilities causing postzygotic barriers to hybridization is a key step in species divergence. Incompatibilities take 2 general forms—structural divergence between chromosomes leading to severe hybrid sterility in F1 hybrids and epistatic interactions between genes causing reduced fitness of hybrid gametes or zygotes (Dobzhansky–Muller incompatibilities). Despite substantial recent progress in understanding the molecular mechanisms and evolutionary origins of both types of incompatibility, how each behaves across multiple generations of hybridization remains relatively unexplored. Here, we use genetic mapping in F2 and recombinant inbred line (RIL) hybrid populations between the phenotypically divergent but naturally hybridizing monkeyflowers Mimulus cardinalis and M. parishii to characterize the genetic basis of hybrid incompatibility and examine its changing effects over multiple generations of experimental hybridization. In F2s, we found severe hybrid pollen inviability (<50% reduction vs parental genotypes) and pseudolinkage caused by a reciprocal translocation between Chromosomes 6 and 7 in the parental species. RILs retained excess heterozygosity around the translocation breakpoints, which caused substantial pollen inviability when interstitial crossovers had not created compatible heterokaryotypic configurations. Strong transmission ratio distortion and interchromosomal linkage disequilibrium in both F2s and RILs identified a novel 2-locus genic incompatibility causing sex-independent gametophytic (haploid) lethality. The latter interaction eliminated 3 of the expected 9 F2 genotypic classes via F1 gamete loss without detectable effects on the pollen number or viability of F2 double heterozygotes. Along with the mapping of numerous milder incompatibilities, these key findings illuminate the complex genetics of plant hybrid breakdown and are an important step toward understanding the genomic consequences of natural hybridization in this model system. 
    more » « less
  4. Morphological stasis has long been regarded as one of the most challenging problems in evolutionary biology. This study focused on the copepod species complex, Eurytemora affinis, as a model system to determine pattern and degree of morphological stasis. This study revealed discordant rates of morphological differentiation, molecular evolution, and reproductive isolation, where speciation was accompanied by lack of morphological differentiation in secondary sex characters. Comparisons were made among phylogenies based on morphometrics, nuclear (allozyme) loci, and mitochondrial DNA (mtDNA) sequences from cytochrome oxidase I, for a total of 43 populations within the complex. These systematic relationships were also compared to patterns of reproductive isolation. In addition, genetic subdivision of nuclear molecular (allozyme) markers (G ST) and quantitative (morphological) characters (Q ST) were determined to infer evolutionary forces driving morphological differentiation. The morphometric phylogeny revealed that all clades, excluding the European clade, were morphologically undifferentiated and formed a polytomy (multifurcation). Morphometric distances were not correlated with mtDNA distances, or with patterns of reproductive isolation. In contrast, nuclear and mtDNA phylogenies were mostly congruent. Reproductive isolation proved to be the most sensitive indicator of speciation, given that two genetically and morphologically proximate populations showed evidence of hybrid breakdown. Quantitative genetic (morphological) subdivision (Q ST = 0.162) was lower than nuclear genetic subdivision (G ST = 0.617) for four laboratory-reared North American populations, indicating retarded evolution of morphological characters. This result contrasts with most other species, where Q ST typically exceeds G ST as a result of directional selection. Thus, in all but the European populations, evolution of the secondary sex characters was marked by morphological stasis, even between reproductively-isolated populations. 
    more » « less
  5. Patterns of morphological divergence across species’ ranges can provide insight into local adaptation and speciation. In this study, we compared phenotypic divergence among 4,221 crickets from 337 populations of two closely related species of field cricket,Gryllus firmusandG. pennsylvanicus, and their hybrids. We found that these species differ across their geographic range in key morphological traits, such as body size and ovipositor length, and we directly compared phenotype with genotype for a subset of crickets to demonstrate nuclear genetic introgression, phenotypic intermediacy of hybrids, and essentially unidirectional mitochondrial introgression. We discuss how these morphological traits relate to life history differences between the two species. Our comparisons across geographic areas support prior research suggesting that cryptic variation withinG. firmusmay represent different species. Our study highlights how variable morphology can be across wide-ranging species and the importance of studying reproductive barriers in more than one or two transects of a hybrid zone. 
    more » « less