Abstract The Gulf Stream affects global climate by transporting water and heat poleward. The current’s volume transport increases markedly along the U.S. East Coast. An extensive observing program using autonomous underwater gliders provides finescale, subsurface observations of hydrography and velocity spanning more than 15° of latitude along the path of the Gulf Stream, thereby filling a 1500-km-long gap between long-term transport measurements in the Florida Strait and downstream of Cape Hatteras. Here, the glider-based observations are combined with shipboard measurements along Line W near 68°W to provide a detailed picture of the along-stream transport increase. To account for the influences of Gulf Stream curvature and adjacent circulation (e.g., corotating eddies) on transport estimates, upper- and lower-bound transports are constructed for each cross–Gulf Stream transect. The upper-bound estimate for time-averaged volume transport above 1000 m is 32.9 ± 1.2 Sv (1 Sv ≡ 106 m3 s−1) in the Florida Strait, 57.3 ± 1.9 Sv at Cape Hatteras, and 75.6 ± 4.7 Sv at Line W. Corresponding lower-bound estimates are 32.3 ± 1.1 Sv in the Florida Strait, 54.5 ± 1.7 Sv at Cape Hatteras, and 69.9 ± 4.2 Sv at Line W. Using the temperature and salinity observations from gliders and Line W, waters are divided into seven classes to investigate the properties of waters that are transported by and entrained into the Gulf Stream. Most of the increase in overall Gulf Stream volume transport above 1000 m stems from the entrainment of subthermocline waters, including upper Labrador Sea Water and Eighteen Degree Water. 
                        more » 
                        « less   
                    
                            
                            Gulf Stream Mean and Eddy Kinetic Energy: Three‐Dimensional Estimates From Underwater Glider Observations
                        
                    
    
            Abstract The strong, meandering, and eddy‐shedding Gulf Stream is a large oceanic reservoir of both mean and eddy kinetic energy in the northwestern Atlantic. Since 2015, underwater gliders equipped with Doppler current profilers have collected over 20,000 absolute velocity profiles in and near the Gulf Stream along the US East Coast. Those observations are used to make three‐dimensional estimates of mean and eddy kinetic energy, substantially expanding the geographic coverage of prior estimates of subsurface kinetic energy in the Gulf Stream. Glider observations are combined via weighted least squares fitting with anisotropic and inhomogeneous length scales to reflect both circulation and sampling density; this averaging technique can be applied to other quantities measured by the gliders. Mean and eddy kinetic energy decay approximately exponentially away from the surface. Vertical decay scales are longest within the high‐speed core of the Gulf Stream and somewhat shorter on the flanks of the Gulf Stream. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10402827
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 6
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The “eddying” ocean, recognized for several decades, has been the focus of much observational and theoretical research. We here describe a generalization for the analysis of eddy energy, based on the use of ensembles, that addresses two key related issues: the definition of an “eddy” and the general computation of energy spectra. An ensemble identifies eddies as the unpredictable component of the flow, and permits the scale decomposition of their energy in inhomogeneous and non‐stationary settings. We present two distinct, but equally valid, spectral estimates: one is similar to classical Fourier spectra, the other reminiscent of classical empirical orthogonal function analysis. Both satisfy Parseval's equality and thus can be interpreted as length‐scale dependent energy decompositions. The issue of “tapering” or “windowing” of the data, used in traditional approaches, is also discussed. We apply the analyses to a mesoscale “resolving” (1/12°) ensemble of the separated North Atlantic Gulf Stream. Our results reveal highly anisotropic spectra in the Gulf Stream and zones of both agreement and disagreement with theoretically expected spectral shapes. In general, we find spectral slopes that fall off faster than the steepest slope expected from quasi‐geostrophic theory.more » « less
- 
            Abstract The thickness‐weighted average (TWA) framework, which treats the residual‐mean flow as the prognostic variable, provides a clear theoretical formulation of the eddy feedback onto the residual‐mean flow. The averaging operator involved in the TWA framework, although in theory being an ensemble mean, in practice has often been approximated by a temporal mean. Here, we analyze an ensemble of North Atlantic simulations at mesoscale‐permitting resolution (1/12°). We therefore recognize means and eddies in terms of ensemble means and fluctuations about those means. The ensemble dimension being orthogonal to the temporal and spatial dimensions negates the necessity for an arbitrary temporal or spatial scale in defining the eddies. Eddy‐mean flow feedbacks are encapsulated in the Eliassen‐Palm (E‐P) flux tensor and its convergence indicates that eddy momentum fluxes dominate in the separated Gulf Stream. The eddies can be interpreted to contribute to the zonal meandering of the Gulf Stream and a northward migration of it in the meridional direction. Downstream of the separated Gulf Stream in the North Atlantic Current region, the interfacial form stress convergence becomes leading order in the E‐P flux convergence.more » « less
- 
            Two kinds of Mobile Assets survey the area in and around the array of moorings at the Coastal Pioneer Array – Coastal Gliders and Coastal Autonomous Underwater Vehicles (AUVs).\n\nAn array of 6 Coastal Gliders (Teledyne-Webb Slocum Gliders) sample large, mesoscale features through a broad region (130 x 185 km) of the outer continental shelf between the shelf break and the Gulf Stream. The role of these gliders in monitoring this broader area is to resolve rings, eddies and meanders from the Gulf Stream as they impinge on the shelf break front. These Teledyne-Webb Slocum Gliders fly through the water column along saw-tooth paths, penetrating the sea surface and diving down to a maximum depth of 1000 meters.\n\nAn array of two Coastal AUVs (REMUS-600 AUVs) travel along transects across the shelf-break frontal system extending beyond the mooring array, covering an area approximately 80 x 100 km in size centered on the array of moorings. The primary role of the AUVs is to resolve cross- and along-front “eddy fluxes” due to frontal instabilities, wind forcing, and mesoscale variability. These AUVs travel along saw-toothed transects, penetrating the sea surface and diving down to a maximum depth of 600 meters.more » « less
- 
            Abstract Midlatitude weather extremes such as blocking events and Rossby wave breaking are often related to large meridional shifts in the westerly jet stream. Numerous diagnostic methods have been developed to characterize these weather events, each emphasizing different yet interrelated aspects of circulation waviness, including identifying large-amplitude ridges or persistent anomalies in geopotential height. In this study, we introduce a new metric to quantify the circulation waviness in terms of effective time scale. This is based on the Rossby wave packet from the one-point correlation map of anomalous meridional wind, applicable to jet waviness involving multiple wavenumbers. Specifically, we estimate the intrinsic frequency of Rossby waves and decay time scale of wave amplitude in the reference frame moving at the local time mean zonal wind. The resulting effective time scale, derived from linear theory, serves as a proxy for the eddy mixing time scale in jet meandering. Remarkably, its spatial distribution roughly resembles that of circulation waviness in the Northern Hemisphere winter as depicted by local wave activity (LWA). In the high-latitude regions characterized by weak zonal winds, the long time scale in waviness aligns with large values in LWA. By contrast, short waviness time scales in subtropical jet regions correspond to the suppressed amplitude in waviness despite large values in eddy kinetic energy (EKE). Furthermore, the effective time scale in waviness largely captures the interannual variability of LWA in observations and its projected future changes in climate model simulations. Thus, this relation between the waviness time scale and zonal wind provides a physical mechanism for understanding how zonal wind changes impact regional weather patterns in a changing climate. Significance StatementThe purpose of this study is to better understand what controls weather extremes in midlatitude regions such as blocking events and Rossby wave breaking. We introduce a novel concept, the effective time scale of jet stream meandering, which sheds light on these phenomena. Through analyzing Rossby waves in the reference frame moving at the local time mean zonal wind, we derive a scaling relation between circulation waviness and eddy mixing time scale. Our findings reveal that this time scale closely mirrors the spatial distribution of circulation waviness in the Northern Hemisphere winter. Importantly, it captures interannual variability and climate change responses. These insights provide a physical basis for understanding how changes in zonal wind impact regional weather patterns in observations and climate models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
