skip to main content


Title: Gulf Stream Mean and Eddy Kinetic Energy: Three‐Dimensional Estimates From Underwater Glider Observations
Abstract

The strong, meandering, and eddy‐shedding Gulf Stream is a large oceanic reservoir of both mean and eddy kinetic energy in the northwestern Atlantic. Since 2015, underwater gliders equipped with Doppler current profilers have collected over 20,000 absolute velocity profiles in and near the Gulf Stream along the US East Coast. Those observations are used to make three‐dimensional estimates of mean and eddy kinetic energy, substantially expanding the geographic coverage of prior estimates of subsurface kinetic energy in the Gulf Stream. Glider observations are combined via weighted least squares fitting with anisotropic and inhomogeneous length scales to reflect both circulation and sampling density; this averaging technique can be applied to other quantities measured by the gliders. Mean and eddy kinetic energy decay approximately exponentially away from the surface. Vertical decay scales are longest within the high‐speed core of the Gulf Stream and somewhat shorter on the flanks of the Gulf Stream.

 
more » « less
Award ID(s):
1923362 1633911
NSF-PAR ID:
10402827
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study examines the spatial and temporal variability of eddy kinetic energy over the Northeast Shelf using observations of surface currents from a unique array of six high frequency radar systems. Collected during summer and winter conditions over three consecutive years, the horizontal scales present were examined in the context of local wind and hydrographic variability, which were sampled concurrently from moorings and autonomous surface vehicles. While area‐averaged mean kinetic energy at the surface was tightly coupled to wind forcing, eddy kinetic energy was not, and was lower in magnitude in winter than summer in all areas. Kinetic energy wavenumber spectral slopes were generally near k−5/3, but varied seasonally, spatially, and between years. In contrast, wavenumber spectra of surface temperature and salinity along repeat transect lines had sharpk−3spectral slopes with little seasonal or inter‐annual variability. Radar‐based estimates of spectral kinetic energy fluxes revealed a mean transition scale of energy near 18 km during stratified months, but suggested much longer scales during winter. Overall, eddy kinetic energy was unrelated to local winds, but the up‐ or down‐scale flux of kinetic energy was tied to wind events and, more weakly, to local density gradients.

     
    more » « less
  2. Abstract

    The performance of eddy‐resolving global ocean–sea ice models in simulating mesoscale eddies is evaluated using six eddy‐resolving experiments forced by different atmospheric reanalysis products. Interestingly, eddy‐resolving ocean general circulation models (OGCMs) tend to simulate more (less) energetic eddy‐rich (eddy‐poor) regions with a smaller (larger) spatial extent than satellite observation, which finally shows that larger (smaller) mesoscale energy intensity (EI) is simulated in the eddy‐rich (eddy‐poor) regions. Quantitatively, there is an approximately 27%–60% overestimation of EI in the eddy‐rich regions, which are mainly located in the Kuroshio–Oyashio Extension, the Gulf Stream, and the Antarctic Circumpolar Currents regions, although the global mean EI is underestimated by 25%–45%. Apparently, the eddy kinetic energy in the eddy‐poor region is underestimated. Further analyses based on coherent mesoscale eddy properties show that the overestimation in the eddy‐rich regions is mainly attributed to mesoscale eddies’ intensity and is more prominent when mesoscale eddies are in their growth stage.

     
    more » « less
  3. Abstract The Gulf Stream affects global climate by transporting water and heat poleward. The current’s volume transport increases markedly along the U.S. East Coast. An extensive observing program using autonomous underwater gliders provides finescale, subsurface observations of hydrography and velocity spanning more than 15° of latitude along the path of the Gulf Stream, thereby filling a 1500-km-long gap between long-term transport measurements in the Florida Strait and downstream of Cape Hatteras. Here, the glider-based observations are combined with shipboard measurements along Line W near 68°W to provide a detailed picture of the along-stream transport increase. To account for the influences of Gulf Stream curvature and adjacent circulation (e.g., corotating eddies) on transport estimates, upper- and lower-bound transports are constructed for each cross–Gulf Stream transect. The upper-bound estimate for time-averaged volume transport above 1000 m is 32.9 ± 1.2 Sv (1 Sv ≡ 106 m3 s−1) in the Florida Strait, 57.3 ± 1.9 Sv at Cape Hatteras, and 75.6 ± 4.7 Sv at Line W. Corresponding lower-bound estimates are 32.3 ± 1.1 Sv in the Florida Strait, 54.5 ± 1.7 Sv at Cape Hatteras, and 69.9 ± 4.2 Sv at Line W. Using the temperature and salinity observations from gliders and Line W, waters are divided into seven classes to investigate the properties of waters that are transported by and entrained into the Gulf Stream. Most of the increase in overall Gulf Stream volume transport above 1000 m stems from the entrainment of subthermocline waters, including upper Labrador Sea Water and Eighteen Degree Water. 
    more » « less
  4. Abstract

    This paper describes the new Regional Arctic Ocean/sea ice Reanalysis (RARE) with a domain that spans a subpolar/polar cap poleward of 45°N. Sequential data assimilation constrains temperature and salinity using World Ocean Database profiles as well as in situ and satellite SST, and PIOMAS sea ice thickness estimates. The 41-yr (1980–2020) RARE1.15.2 reanalysis with resolution varying between 2 and 5 km horizontally and 1–10 m vertically in the upper 100 m is examined. To explore the impact of resolution RARE1.15.2 is compared to a coarser-resolution SODA3.15.2, which uses the same modeling and data assimilation system. Improving resolution in the reanalysis system improves agreement with observations. It produces stronger more compact currents, enhances eddy kinetic energy, and strengthens along-isopycnal heat and salt transports, but reduces vertical exchanges and thus strengthens upper ocean haline stratification. RARE1.15.2 and SODA3.15.2 are also compared to the Hadley Center EN4.2.2 statistical objective analysis. In regions of reasonable data coverage such as the Nordic seas the three products produce similar time-mean distributions of temperature and salinity. But in regions of poor coverage and in regions where the coverage changes in time EN4.2.2 suffers more from those inhomogeneities. Finally, the impact on the Arctic of interannual temperature fluctuations in the subpolar gyres on the Arctic Ocean is compared. The influence of the subpolar North Pacific is limited to a region surrounding Bering Strait. The influence of the subpolar North Atlantic, in contrast, spreads throughout the Nordic seas and Barents Sea in all three products within two years.

    Significance Statement

    The Arctic Ocean/sea ice system plays crucial roles in climate variability and change by controlling the northern end of the oceanic overturning circulation, the equator to pole air pressure gradient, and Earth’s energy balance. Yet the historical ocean observation set is sparse and inhomogeneous, while ocean dynamics has challengingly fine horizontal and vertical scales. This paper introduces a new Regional Arctic Ocean/sea ice Reanalysis (RARE) whose goal is to use the combined constraints of mesoscale ocean dynamics, historical observations, surface meteorology, and continental runoff in a data assimilation framework to reconstruct historical variability. RARE is used to produce a 41-yr ocean/sea ice reanalysis 1980–2020 whose results are described here.

     
    more » « less
  5. Abstract

    The impacts of interannual oscillations of the Gulf Stream (GS) on oceanic mesoscale variability are investigated using satellite observations of sea surface height (SSH) and sea surface temperature (SST) from 1993 to 2018. We show that variations in GS position, strength, and meandering status are the dominant spatiotemporal modes in regional SSH variability as they explain over 50% of the total variance. In particular, meridional shift of the GS associated with the large‐scale wind variation over the North Atlantic contributes to approximately 30% of SSH variability. We further find that this path displacement mode can drive approximately 15% of regional mesoscale variability in eddy kinetic energy and divergent eddy heat flux. This observational‐based evidence of ocean mesoscale response to GS shift infers a potentially important forcing mechanism that could drive eddy‐scale ocean variability and has far‐reaching implications for regional ocean and ecosystem dynamics in response to climate variation.

     
    more » « less