skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: The Type Ibn Supernova 2019kbj: Indications for Diversity in Type Ibn Supernova Progenitors
Abstract

Type Ibn supernovae (SNe) are a rare class of stellar explosions whose progenitor systems are not yet well determined. We present and analyze observations of the Type Ibn SN 2019kbj, and model its light curve in order to constrain its progenitor and explosion parameters. SN 2019kbj shows roughly constant temperature during the first month after peak, indicating a power source (likely circumstellar material interaction) that keeps the continuum emission hot at ∼15,000 K. Indeed, we find that the radioactive decay of56Ni is disfavored as the sole power source of the bolometric light curve. A radioactive decay + circumstellar material (CSM) interaction model, on the other hand, does reproduce the bolometric emission well. The fits prefer a uniform-density CSM shell rather than CSM due to a steady mass-loss wind, similar to what is seen in other Type Ibn SNe. The uniform-density CSM shell model requires ∼0.1Mof56Ni and ∼1Mtotal ejecta mass to reproduce the light curve. SN 2019kbj differs in this manner from another Type Ibn SN with derived physical parameters, SN 2019uo, for which an order of magnitude lower56Ni mass and larger ejecta mass were derived. This points toward a possible diversity in SN Ibn progenitor systems and explosions.

 
more » « less
Award ID(s):
1911225 1911151
PAR ID:
10402837
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
946
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 30
Size(s):
Article No. 30
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M) and56Ni masses (≲0.04M) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-stripped star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.

     
    more » « less
  2. Abstract

    Rapidly evolving transients, or objects that rise and fade in brightness on timescales two to three times shorter than those of typical Type Ia or Type II supernovae (SNe), have uncertain progenitor systems and powering mechanisms. Recent studies have noted similarities between rapidly evolving transients and Type Ibn SNe, which are powered by ejecta interacting with He-rich circumstellar material (CSM). In this work we present multiband photometric and spectroscopic observations from Las Cumbres Observatory and Swift of four fast-evolving Type Ibn SNe. We compare these observations with those of rapidly evolving transients identified in the literature. We discuss several common characteristics between these two samples, including their light curve and color evolution as well as their spectral features. To investigate a common powering mechanism we construct a grid of analytical model light curves with luminosity inputs from CSM interaction as well as56Ni radioactive decay. We find that models with ejecta masses of ≈1–3M, CSM masses of ≈0.2–1M, and CSM radii of ≈20–65 au can explain the diversity of peak luminosities, rise times, and decline rates observed in Type Ibn SNe and rapidly evolving transients. This suggests that a common progenitor system—the core collapse of a high-mass star within a dense CSM shell—can reproduce the light curves of even the most luminous and fast-evolving objects, such as AT 2018cow. This work is one of the first to reproduce the light curves of both SNe Ibn and other rapidly evolving transients with a single model.

     
    more » « less
  3. Abstract

    We present a comprehensive analysis of the photometric and spectroscopic evolution of SN 2021foa, unique among the class of transitional supernovae for repeatedly changing its spectroscopic appearance from hydrogen-to-helium-to-hydrogen dominated (IIn-to-Ibn-to-IIn) within 50 days past peak brightness. The spectra exhibit multiple narrow (≈300–600 km s−1) absorption lines of hydrogen, helium, calcium, and iron together with broad helium emission lines with a full width at half-maximum (FWHM) of ∼6000 km s−1. For a steady, wind mass-loss regime, light-curve modeling results in an ejecta mass of ∼8Mand circumstellar material (CSM) mass below 1M, and an ejecta velocity consistent with the FWHM of the broad helium lines. We obtain a mass-loss rate of ≈2Myr−1. This mass-loss rate is 3 orders of magnitude larger than derived for normal Type II supernovae. We estimate that the bulk of the CSM of SN 2021foa must have been expelled within half a year, about 12 yr ago. Our analysis suggests that SN 2021foa had a helium-rich ejecta that swept up a dense shell of hydrogen-rich CSM shortly after explosion. At about 60 days past peak brightness, the photosphere recedes through the dense ejecta-CSM region, occulting much of the redshifted emission of the hydrogen and helium lines, which results in an observed blueshift (∼−3000 km s−1). Strong mass-loss activity prior to explosion, such as those seen in SN 2009ip-like objects and SN 2021foa as precursor emission, are the likely origin of a complex, multiple-shell CSM close to the progenitor star.

     
    more » « less
  4. null (Ed.)
    Context. Supernovae (SNe) Type Ibn are rapidly evolving and bright ( M R, peak  ∼ −19) transients interacting with He-rich circumstellar material (CSM). SN 2018bcc, detected by the ZTF shortly after explosion, provides the best constraints on the shape of the rising light curve (LC) of a fast Type Ibn. Aims. We used the high-quality data set of SN 2018bcc to study observational signatures of the class. Additionally, the powering mechanism of SN 2018bcc offers insights into the debated progenitor connection of Type Ibn SNe. Methods. We compared well-constrained LC properties obtained from empirical models with the literature. We fit the pseudo-bolometric LC with semi-analytical models powered by radioactive decay and CSM interaction. Finally, we modeled the line profiles and emissivity of the prominent He  I lines, in order to study the formation of P-Cygni profiles and to estimate CSM properties. Results. SN 2018bcc had a rise time to peak of the LC of 5.6 −0.1 +0.2 days in the restframe with a rising shape power-law index close to 2, and seems to be a typical rapidly evolving Type Ibn SN. The spectrum lacked signatures of SN-like ejecta and was dominated by over 15 He emission features at 20 days past peak, alongside Ca and Mg, all with V FWHM ∼ 2000 km s −1 . The luminous and rapidly evolving LC could be powered by CSM interaction but not by the decay of radioactive 56 Ni. Modeling of the He  I lines indicated a dense and optically thick CSM that can explain the P-Cygni profiles. Conclusions. Like other rapidly evolving Type Ibn SNe, SN 2018bcc is a luminous transient with a rapid rise to peak powered by shock interaction inside a dense and He-rich CSM. Its spectra do not support the existence of two Type Ibn spectral classes. We also note the remarkable observational match to pulsational pair instability SN models. 
    more » « less
  5. Abstract

    Type Ibn supernovae (SNe Ibn) are rare stellar explosions powered primarily by interaction between the SN ejecta and H-poor, He-rich material lost by their progenitor stars. Multiwavelength observations, particularly in the X-rays, of SNe Ibn constrain their poorly understood progenitor channels and mass-loss mechanisms. Here we present Swift X-ray, ultraviolet, and ground-based optical observations of the Type Ibn SN 2022ablq, only the second SN Ibn with X-ray detections to date. While similar to the prototypical Type Ibn SN 2006jc in the optical, SN 2022ablq is roughly an order of magnitude more luminous in the X-rays, reaching unabsorbed luminositiesLX∼ 4 × 1040erg s−1between 0.2–10 keV. From these X-ray observations we infer time-varying mass-loss rates between 0.05 and 0.5Myr−1peaking 0.5–2 yr before explosion. This complex mass-loss history and circumstellar environment disfavor steady-state winds as the primary progenitor mass-loss mechanism. We also search for precursor emission from alternative mass-loss mechanisms, such as eruptive outbursts, in forced photometry during the 2 yr before explosion. We find no statistically significant detections brighter thanM≈ −14—too shallow to rule out precursor events similar to those observed for other SNe Ibn. Finally, numerical models of the explosion of an ∼15Mhelium star that undergoes an eruptive outburst ≈1.8 yr before explosion are consistent with the observed bolometric light curve. We conclude that our observations disfavor a Wolf–Rayet star progenitor losing He-rich material via stellar winds and instead favor lower-mass progenitor models, including Roche-lobe overflow in helium stars with compact binary companions or stars that undergo eruptive outbursts during late-stage nucleosynthesis stages.

     
    more » « less