skip to main content


This content will become publicly available on March 23, 2024

Title: Lianas increase lightning‐caused disturbance severity in a tropical forest
Summary

Lightning is an important agent of plant mortality and disturbance in forests. Lightning‐caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition.

We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama.

The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance.

These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning‐related tree damage and death are likely to increase.

 
more » « less
Award ID(s):
2213245 2213246
NSF-PAR ID:
10402850
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
238
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1865-1875
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tree death due to lightning influences tropical forest carbon cycling and tree community dynamics. However, the distribution of lightning damage among trees in forests remains poorly understood.

    We developed models to predict direct and secondary lightning damage to trees based on tree size, crown exposure and local forest structure. We parameterized these models using data on the locations of lightning strikes and censuses of tree damage in strike zones, combined with drone‐based maps of tree crowns and censuses of all trees within a 50‐ha forest dynamics plot on Barro Colorado Island, Panama.

    The likelihood of a direct strike to a tree increased with larger exposed crown area and higher relative canopy position (emergent > canopy >>> subcanopy), whereas the likelihood of secondary lightning damage increased with tree diameter and proximity to neighbouring trees. The predicted frequency of lightning damage in this mature forest was greater for tree species with larger average diameters.

    These patterns suggest that lightning influences forest structure and the global carbon budget by non‐randomly damaging large trees. Moreover, these models provide a framework for investigating the ecological and evolutionary consequences of lightning disturbance in tropical forests.

    Synthesis. Our findings indicate that the distribution of lightning damage is stochastic at large spatial grain and relatively deterministic at smaller spatial grain (<15 m). Lightning is more likely to directly strike taller trees with large crowns and secondarily damage large neighbouring trees that are closest to the directly struck tree. The results provide a framework for understanding how lightning can affect forest structure, forest dynamics and carbon cycling. The resulting lightning risk model will facilitate informed investigations into the effects of lightning in tropical forests.

     
    more » « less
  2. Abstract

    Lightning is a common source of disturbance, but its ecological effects in tropical forests are largely undescribed. Here we quantify the contributions of lightning strikes to forest turnover and plant mortality in a lowland Panamanian forest using a real‐time lightning monitoring system. We examined 2,195 lightning‐damaged trees distributed among 93 different strikes. None exhibited scars or fires. On average, each strike disturbed 451 m2(95% CI: 365–545 m2), created a canopy gap of 304 m2(95% CI 198–454 m2), and caused 7.36 Mg of woody biomass turnover (CI: 5.36–9.65 Mg). Cumulatively, we estimate that lightning strikes in this forest create canopy gaps equaling 0.39% of forest canopy area, representing 20.1% of annual gap area formation, and are responsible for 16.1% of total woody biomass turnover. Trees, lianas, herbaceous climbers and epiphytes were killed by lightning at rates 8–29 times greater than their baseline mortality rates in undamaged control sites. The likelihood of lightning‐caused death was higher for trees, lianas, and herbaceous climbers than for epiphytes, and high liana mortality suggests that lightning is an important driver of liana turnover. These results indicate that lightning influences gap dynamics, plant community composition and carbon storage capacity in some tropical forests.

     
    more » « less
  3. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

     
    more » « less
  4. Abstract

    Over the past decades, tropical forests have experienced both compositional and structural changes. In the Neotropics, researchers at multiple sites have observed significant increases in the abundance and biomass of lianas (i.e. woody vines) relative to trees. However, the role of dynamics at early life stages in contributing to increasing liana abundance remains unclear.

    We took advantage of a unique dataset on seedling dynamics over 16 years in ~20 000 1‐m2plots in a tropical forest in Panama to examine temporal and spatial trends in liana and tree seedling abundance.

    We found that the relative abundance of liana seedlings increased across the study period, from 0.18 in 2001 to 0.24 in 2017. However, increases in liana seedling relative abundance appear to have levelled off in more recent years. The observed increases in liana relative abundance appear to be the result of both higher survival and higher recruitment rates of liana seedlings compared to tree seedlings.

    Increasing liana abundance in the seedling layer was not explained by annual variation in dry season length, total rainfall or the proportion of area occupied by canopy gaps. In addition, liana seedlings did not exhibit a demographic advantage (i.e. higher recruitment or survival) over tree seedlings in dry habitats.

    Synthesis.Our results reveal that seedling communities experienced important compositional changes in the past, but liana seedling relative abundance may have stabilized in recent years. Longer‐term monitoring is needed to determine whether tropical forests will continue to experience compositional changes that may alter forest structure and ecosystem function.

     
    more » « less
  5. Abstract

    Species composition and community structure in Neotropical forests have been severely affected by increases in climate change and disturbance. Among the most conspicuous changes is the proliferation of lianas. These increases have affected not only the carbon storage capacity of forests but also tree dynamics by reducing tree growth and increasing mortality. Despite the importance of lianas in Neotropical forests, most of the studies on lianas have focused on adult stages, ignoring dynamics at the seedlings stage. Here, we asked whether observed increases in liana abundance are associated with a demographic advantage that emerges early in liana ontogeny and with decreased precipitation and increased disturbance. To test this, we compared patterns of growth and survival between liana seedlings and tree seedlings using a long‐term data set of seedling plots from a subtropical wet forest in Puerto Rico, USA. Then, we examined the effect of precipitation and land use history on these demographic variables. We found evidence for liana seedling survival advantage over trees, but no growth advantages. This survival advantage exhibited significant temporal variation linked with patterns of rainfall, as well as differences associated with land‐use history in the study area. Furthermore, we found that neighborhood density has a negative effect on liana survival and growth. Our results indicate that liana proliferation is likely related to a survival advantage that emerges in early stages and is influenced by climatic conditions and past disturbance. Predicted climatic changes in rainfall patterns, including more frequent and severe droughts, together with increases in disturbance, could have a significant effect on seedling tropical communities by favoring lianas.

     
    more » « less