Summary Lightning is an important agent of plant mortality and disturbance in forests. Lightning‐caused disturbance is highly variable in terms of its area of effect and disturbance severity (i.e. tree damage and death), but we do not know how this variation is influenced by forest structure and plant composition.We used a novel lightning detection system to quantify how lianas influenced the severity and spatial extent (i.e. area) of lightning disturbance using 78 lightning strikes in central Panama.The local density of lianas (measured as liana basal area) was positively associated with the number of trees killed and damaged by lightning, and patterns of plant damage indicated that this occurred because lianas facilitated more electrical connections from large to small trees. Liana presence, however, did not increase the area of the disturbance. Thus, lianas increased the severity of lightning disturbance by facilitating damage to additional trees without influencing the footprint of the disturbance.These findings indicate that lianas spread electricity to damage and kill understory trees that otherwise would survive a strike. As liana abundance increases in tropical forests, their negative effects on tree survival with respect to the severity of lightning‐related tree damage and death are likely to increase.
more »
« less
Dry conditions and disturbance promote liana seedling survival and abundance
Abstract Species composition and community structure in Neotropical forests have been severely affected by increases in climate change and disturbance. Among the most conspicuous changes is the proliferation of lianas. These increases have affected not only the carbon storage capacity of forests but also tree dynamics by reducing tree growth and increasing mortality. Despite the importance of lianas in Neotropical forests, most of the studies on lianas have focused on adult stages, ignoring dynamics at the seedlings stage. Here, we asked whether observed increases in liana abundance are associated with a demographic advantage that emerges early in liana ontogeny and with decreased precipitation and increased disturbance. To test this, we compared patterns of growth and survival between liana seedlings and tree seedlings using a long‐term data set of seedling plots from a subtropical wet forest in Puerto Rico, USA. Then, we examined the effect of precipitation and land use history on these demographic variables. We found evidence for liana seedling survival advantage over trees, but no growth advantages. This survival advantage exhibited significant temporal variation linked with patterns of rainfall, as well as differences associated with land‐use history in the study area. Furthermore, we found that neighborhood density has a negative effect on liana survival and growth. Our results indicate that liana proliferation is likely related to a survival advantage that emerges in early stages and is influenced by climatic conditions and past disturbance. Predicted climatic changes in rainfall patterns, including more frequent and severe droughts, together with increases in disturbance, could have a significant effect on seedling tropical communities by favoring lianas.
more »
« less
- PAR ID:
- 10446165
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 100
- Issue:
- 1
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.more » « less
-
Lianas are major contributors to tropical forest dynamics, yet we know little about their mortality. Using overlapping censuses of the lianas and trees across a 50 ha stand of moist tropical forest, we contrasted community-wide patterns of liana mortality with relatively well-studied patterns of tree mortality to quantify patterns of liana death and identify contributing factors. Liana mortality rates were 172% higher than tree mortality rates, but species-level mortality rates of lianas were similar to trees with ‘fast’ life-history strategies and both growth forms exhibited similar spatial and size-dependent patterns. The mortality rates of liana saplings (<2.1 cm in diameter), which represent about 50% of liana individuals, decreased with increasing disturbance severity and remained consistently low during post-disturbance stand thinning. In contrast, larger liana individuals and trees of all sizes had elevated mortality rates in response to disturbance and their mortality rates decreased over time since disturbance. Within undisturbed forest patches, liana mortality rates increased with increasing soil fertility in a manner similar to trees. The distinct responses of liana saplings to disturbance appeared to distinguish liana mortality from that of trees, whereas similarities in their patterns of death suggest that there are common drivers of woody plant mortality.more » « less
-
Insect herbivory is one of the major drivers of seedling mortality in the tropics and influences plant abundances and community composition. Anthropogenic disturbance can alter patterns of insect herbivory with potential consequences on plant communities in restored forests. We planted seedlings of early‐ and later‐stage successional tree species in 13–15‐year‐old restored and remnant tropical forests. We then either excluded insect herbivores or left seedlings exposed to examine how insect herbivory‐affected seedling mortality. Early‐successional seedlings experienced similar decreases in mortality when insect herbivores were excluded from both restored and remnant forest sites, but this effect was smaller and driven by only a few species in restored forests. Later‐successional seedlings experienced a stronger decrease in mortality between open and insect‐excluded treatments in remnant than restored sites. Our results suggest that herbivory‐driven seedling mortality is lower in restored forests, particularly for later‐successional seedlings. Results are encouraging from a restoration perspective because recruitment of later‐successional seedlings is a key component of ecosystem recovery. However, if reductions in seedling mortality continue over the long term, this may affect tree community composition as succession progresses.more » « less
-
Abstract Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors—soil moisture, understory light, and conspecific neighborhood density—modulate these responses. Community‐wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community‐wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long‐term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long‐term stand dynamics.more » « less