skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cryptic Constituents: The Paradox of High Flux–Low Concentration Components of Aquatic Ecosystems
The interface between terrestrial ecosystems and inland waters is an important link in the global carbon cycle. However, the extent to which allochthonous organic matter entering freshwater systems plays a major role in microbial and higher-trophic-level processes is under debate. Human perturbations can alter fluxes of terrestrial carbon to aquatic environments in complex ways. The biomass and production of aquatic microbes are traditionally thought to be resource limited via stoichiometric constraints such as nutrient ratios or the carbon standing stock at a given timepoint. Low concentrations of a particular constituent, however, can be strong evidence of its importance in food webs. High fluxes of a constituent are often associated with low concentrations due to high uptake rates, particularly in aquatic food webs. A focus on biomass rather than turnover can lead investigators to misconstrue dissolved organic carbon use by bacteria. By combining tracer methods with mass balance calculations, we reveal hidden patterns in aquatic ecosystems that emphasize fluxes, turnover rates, and molecular interactions. We suggest that this approach will improve forecasts of aquatic ecosystem responses to warming or altered nitrogen usage.  more » « less
Award ID(s):
1331940
PAR ID:
10402943
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Water
Volume:
13
Issue:
16
ISSN:
2073-4441
Page Range / eLocation ID:
2301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As terrestrial leaf litter decomposes in rivers, its constituent elements follow multiple pathways. Carbon leached as dissolved organic matter can be quickly taken up by microbes, then respired before it can be transferred to the macroscopic food web. Alternatively, this detrital carbon can be ingested and assimilated by aquatic invertebrates, so it is retained longer in the stream and transferred to higher trophic levels. Microbial growth on litter can affect invertebrates through three pathways, which are not mutually exclusive. First, microbes can facilitate invertebrate feeding, improving food quality by conditioning leaves and making them more palatable for invertebrates. Second, microbes can be prey for invertebrates. Third, microbes can compete with invertebrates for resources bound within litter and may produce compounds that retard carbon and nitrogen fluxes to invertebrates. As litter is broken down into smaller particles, there are many opportunities for its elements to reenter the stream food web. Here, I describe a conceptual framework for evaluating how traits of leaf litter will affect its fate in food webs and ecosystems that is useful for predicting how global change will alter carbon fluxes into and out of streams. 
    more » « less
  2. Mercury (Hg) biomagnification in aquatic food webs is a global concern; yet, the ways species traits and interactions mediate these fluxes remain poorly understood. Few pathways dominated Hg flux in the Colorado River despite large spatial differences in food web complexity, and fluxes were mediated by one functional trait, predation resistance. New Zealand mudsnails are predator resistant and a trophic dead end for Hg in food webs we studied. Fishes preferred blackflies, which accounted for 56 to 80% of Hg flux to fishes, even where blackflies were rare. Food web properties, i.e., match/mismatch between insect production and fish consumption, governed amounts of Hg retained in the river versus exported to land. An experimental flood redistributed Hg fluxes in the simplified tailwater food web, but not in complex downstream food webs. Recognizing that species traits, species interactions, and disturbance mediate contaminant exposure can improve risk management of linked aquatic-terrestrial ecosystems. 
    more » « less
  3. At PIE, mummichog (Fundulus heteroclitus) use the spring-cycle high tides to access the flooded high marsh platform and eat invertebrate prey, coupling the high marsh and aquatic creek food webs by gathering energy produced on the high marsh and making it available to the aquatic food web. Changes in the geomorphology of saltmarsh creek edges greatly influence the survival, biomass, and resource use of mummichog populations. Here, we use bomb calorimetry to assess individual mummichog caloric content per gram of biomass at 4 PIE creeks known to present different geomorphologic patterns in their low marsh zones. These data can be used for the assessment of the impact of low marsh geomorphology on mummichog caloric content and energy production in PIE food webs. These data were included as part of two studies “Habitat decoupling via saltmarsh creek geomorphology alters connection between spatially-coupled food webs” (Lesser et al. 2020) and “Cross-habitat access modifies the ‘trophic relay’ in New England saltmarsh ecosystems” (Lesser et al. 2021). 
    more » « less
  4. Dissolved organic matter (DOM) drives biogeochemical processes in aquatic ecosystems. Yet, how hydrologic restoration in nutrient‐enriched ecosystems changes DOM and the consequences of those changes for the carbon cycle remain unclear. To predict the consequences of hydrologic restoration on carbon cycling in restored wetlands, we need to understand how local environmental factors influence production, processing, and transport of DOM. We collected surface water samples along transects in restored peat (organic‐rich, macrophyte‐dominated) and marl (carbonate, periphyton‐dominated) freshwater marshes in the Everglades (Florida, U.S.A.) that varied in environmental factors (water depth, phosphorus [P] concentrations [water, macrophytes, periphyton, and soil], and primary producer biomass) to understand drivers of dissolved organic carbon (DOC) concentrations and DOM composition. Higher water depths led to a “greening” of DOM, due to increasing algal contributions, with decreasing concentrations of DOC in peat wetlands, and a “browning” of DOM, due to increasing humic contributions, with increasing DOC concentrations in marl wetlands. Soil total P was positively correlated with DOC concentrations and microbial contributions to DOM in peat wetlands, and periphyton total P was positively correlated with algal contributions to DOM in marl wetlands. Despite large variations in both vegetation biomass and periphyton biovolume across transects and sites, neither were predictors of DOC concentrations or DOM composition. Hydrologic restoration differentially alters DOM in peat and marl marshes and interacts with nutrient enrichment to shift proportions of green and brown contributions to surface water chemistry, which has the potential to modify wetland food webs, as well as the processing of carbon by micro‐organisms. 
    more » « less
  5. Abstract Riparian zones are a critical terrestrial‐aquatic ecotone. They play important roles in ecosystems including (1) harboring biodiversity, (2) influencing light and carbon fluxes to aquatic food webs, (3) maintaining water quality and streamflow, (4) enhancing aquatic habitat, (5) influencing greenhouse gas production, and (6) sequestering carbon. Defining what qualifies as a riparian zone is a first step to delineation. Many definitions of riparian boundaries focus on static attributes or a subset of potential functions without recognizing that they are spatially continuous, temporally dynamic, and multi‐dimensional. We emphasize that definitions should consider multiple ecological and biogeochemical functions and physical gradients, and explore how this approach influences spatial characterization of riparian zones. One or more of the following properties can guide riparian delineation: (1) distinct species, elevated biodiversity, or species with specific adaptations to flooding and inundation near streams relative to nearby upland areas; (2) unique vegetation structure directly influencing irradiance or organic material inputs to aquatic ecosystems; (3) hydrologic and geomorphic features or processes maintaining floodplains; (4) hydric soil properties that differ from the uplands; and/or (5) elevated retention of dissolved and suspended materials relative to adjacent uplands. Considering these properties for an operational and dynamic definition of riparian zones recognizes that riparian boundaries vary in space (e.g., variation of riparian corridor widths within or among watersheds) and time (e.g., responses to hydrological variance and climate change). Inclusive definitions addressing multiple riparian functions could facilitate attainment of research and management goals by linking properties of interest to specific outcomes. 
    more » « less