skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hamband: RDMA Replicated Data Types
Data centers are increasingly equipped with RDMAs. These network interfaces mark the advent of a new distributed system model where a node can directly access the remote memory of another. They have enabled microsecond-scale replicated services. The underlying replication protocols of these systems execute all operations under strong consistency. However, strong consistency can hinder response time and availability, and recent replication models have turned to a hybrid of strong and relaxed consistency. This paper presents RDMA replicated data types, the first hybrid replicated data types for the RDMA network model. It presents a novel operational semantics for these types that considers three distinct categories of methods and captures their re- quired coordination, and formally proves that they preserve convergence and integrity. It implements these semantics in a system called Hamband that leverages direct remote accesses to efficiently implement the required coordination protocols. The empirical evaluation shows that Hamband outperforms the throughput of existing message-based and SMR-based implementations by more than 4x.  more » « less
Award ID(s):
1942711
PAR ID:
10402955
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
PLDI'22 (ACM SIGPLAN Conference on Programming Language Design and Implementation)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lahiri, Shuvendu K.; Wang, Chao (Ed.)
    Replication is a common technique to build reliable and scalable systems. Traditional strong consistency maintains the same total order of operations across replicas. This total order is the source of multiple desirable consistency properties: integrity, convergence and recency. However, maintaining the total order has proven to inhibit availability and performance. Weaker notions exhibit responsiveness and scalability; however, they forfeit the total order and hence its favorable properties. This project revives these properties with as little coordination as possible. It presents a tool called ๐ป๐‘Ž๐‘š๐‘๐‘Ž that given a sequential object with the declaration of its integrity and recency requirements, automatically synthesizes a correct-by-construction replicated object that simultaneously guarantees the three properties. It features a relational object specification language and a syntax-directed analysis that infers optimum staleness bounds. Further, it defines coordination-avoidance conditions and the operational semantics of replicated systems that provably guarantees the three properties. It characterizes the computational power and presents a protocol for recency-aware objects. ๐ป๐‘Ž๐‘š๐‘๐‘Ž uses automatic solvers statically and embeds them in the runtime to dynamically decide the validity of coordination-avoidance conditions. The experiments show that recency-aware objects reduce coordination and response time. 
    more » « less
  2. Baldan, Paolo; de_Paiva, Valeria (Ed.)
    We describe ongoing work that models conflict-free replicated data types (CRDTs) from a coalgebraic point of view. CRDTs are data structures designed for replication across multiple physical locations in a distributed system. We show how to model a CRDT at the local replica level using a novel coalgebraic semantics for CRDTs. We believe this is the first step towards presenting a unified theory for specifying and verifying CRDTs and replicated state machines. As a case study, we consider emulation of CRDTs in terms of coalgebra. 
    more » « less
  3. Calzavara, Stefano; Naumann, David (Ed.)
    Availability is crucial to the security of distributed systems, but guaranteeing availability is hard, especially when participants in the system may act maliciously. Quorum replication protocols provide both integrity and availability: data and computation is replicated at multiple independent hosts, and a quorum of these hosts must agree on the output of all operations applied to the data. Unfortunately, these protocols have high overhead and can be difficult to calibrate for a specific applicationโ€™s needs. Ideally, developers could use high-level abstractions for consensus and replication to write fault-tolerant code that is secure by construction. This paper presents Flow-Limited Authorization for Quorum Replication (FLAQR), a core calculus for building distributed applications with heterogeneous quorum replication protocols while enforcing end-to-end information security. Our type system ensures that well-typed FLAQR programs cannot fail (experience an unrecoverable error) in ways that violate their type-level specifications. We present noninterference theorems that characterize FLAQRโ€™s confidentiality, integrity, and availability in the presence of consensus, replication, and failures, as well as a liveness theorem for the class of majority quorum protocols under a bounded number of faults. Additionally, we present an extension to FLAQR that supports secret sharing as a form of declassification and prove it preserves integrity and availability security properties. 
    more » « less
  4. Replication is essential for fault-tolerance. However, in in-memory systems, it is a source of high overhead. Remote direct memory access (RDMA) is attractive to create redundant copies of data, since it is low-latency and has no CPU overhead at the target. However, existing approaches still result in redundant data copying and active receivers. To ensure atomic data transfers, receivers check and apply only fully received messages. Tailwind is a zero-copy recovery-log replication protocol for scale-out in-memory databases. Tailwind is the first replication protocol that eliminates all CPU-driven data copying and fully bypasses target server CPUs, thus leaving backups idle. Tailwind ensures all writes are atomic by leveraging a protocol that detects incomplete RDMA transfers. Tailwind substantially improves replication throughput and response latency compared with conventional RPC-based replication. In symmetric systems where servers both serve requests and act as replicas, Tailwind also improves normal-case throughput by freeing server CPU resources for request processing. We implemented and evaluated Tailwind on RAMCloud, a low-latency in-memory storage system. Experiments show Tailwind improves RAMCloud's normal-case request processing throughput by 1.7x. It also cuts down writes median and 99th percentile latencies by 2x and 3x respectively. 
    more » « less
  5. null (Ed.)
    The infrastructure available to large-scale and medium-scale web services now spans dozens of geographically dispersed datacenters. Deploying across many datacenters has the potential to significantly reduce end-user latency by serving users nearer their location. However, deploying across many datacenters requires the backend storage system be partially replicated. In turn, this can sacrifice the low latency benefits of many datacenters, especially when a storage system provides guarantees on what operations will observe. We present the K2 storage system that provides lower latency for large-scale and medium-scale web services using partial replication of data over many datacenters with strong guarantees: causal consistency, read-only transactions, and write-only transactions. K2 provides the best possible worst-case latency for partial replication, a single round trip to remote datacenters, and often avoids sending any requests to far away datacenters using a novel replication approach, write-only transaction algorithm, and read-only transaction algorithm. 
    more » « less