skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multidisciplinary Reading Patterns of Digital Documents
Reading plays a vital role in updating the researchers on recent developments in the field, including but not limited to solutions to various problems and collaborative studies between disciplines. Prior studies identify reading patterns to vary depending on the level of expertise of the researcher on the content of the document. We present a pilot study of eye-tracking measures during a reading task with participants across different areas of expertise with the intention of characterizing the reading patterns using both eye movement and pupillary information.  more » « less
Award ID(s):
2045523
PAR ID:
10403003
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 Symposium on Eye Tracking Research and Applications
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Researchers read scientific literature to keep current in the field and find state-of-the-art solutions to various scientific problems. Prior work suggests that reading patterns may vary with the researcher’s domain expertise and on the content of the digital document. In this work, we present a pilot study of eye-tracking measures during a reading task with the options for zooming and panning of the reading material. The main goal is to analyze unconstrained reading patterns of digital documents using eye movement fixations and dwell time on various sections of a digital document. Our results indicate that participants mostly focused on methodology and results sections, which is consistent with the prior work with constrained reading patterns. 
    more » « less
  2. Abstract We know that reading involves coordination between textual characteristics and visual attention, but research linking eye movements during reading and comprehension assessed after reading is surprisingly limited, especially for reading long connected texts. We tested two competing possibilities: (a) the weak association hypothesis: Links between eye movements and comprehension are weak and short‐lived, versus (b) the strong association hypothesis: The two are robustly linked, even after a delay. Using a predictive modeling approach, we trained regression models to predict comprehension scores from global eye movement features, using participant‐level cross‐validation to ensure that the models generalize across participants. We used data from three studies in which readers (Ns = 104, 130, 147) answered multiple‐choice comprehension questions ~30 min after reading a 6,500‐word text, or after reading up to eight 1,000‐word texts. The models generated accurate predictions of participants' text comprehension scores (correlations between observed and predicted comprehension: 0.384, 0.362, 0.372,ps < .001), in line with the strong association hypothesis. We found that making more, but shorter fixations, consistently predicted comprehension across all studies. Furthermore, models trained on one study's data could successfully predict comprehension on the others, suggesting generalizability across studies. Collectively, these findings suggest that there is a robust link between eye movements and subsequent comprehension of a long connected text, thereby connecting theories of low‐level eye movements with those of higher order text processing during reading. 
    more » « less
  3. null (Ed.)
    Studies of eye movements during source code reading have supported the idea that reading source code differs fundamentally from reading natural text. The paper analyzed an existing data set of natural language and source code eye movement data using the E-Z reader model of eye movement control. The results show that the E-Z reader model can be used with natural text and with source code where it provides good predictions of eye movement duration. This result is confirmed by comparing model predictions to eye-movement data from this experiment and calculating the correlation score for each metric. Finally, it was found that gaze duration is influenced by token frequency in code and in natural text. The frequency effect is less pronounced on first fixation duration and single fixation duration. An eye movement control model for source code reading may open the door for tools in education and the industry to enhance program comprehension. 
    more » « less
  4. null (Ed.)
    Program comprehension is a vital skill in software development. This work investigates program comprehension by examining the eye movement of novice programmers as they gain programming experience over the duration of a Java course. Their eye movement behavior is compared to the eye movement of expert programmers. Eye movement studies of natural text show that word frequency and length influence eye movement duration and act as indicators of reading skill. The study uses an existing longitudinal eye tracking dataset with 20 novice and experienced readers of source code. The work investigates the acquisition of the effects of token frequency and token length in source code reading as an indication of program reading skill. The results show evidence of the frequency and length effects in reading source code and the acquisition of these effects by novices. These results are then leveraged in a machine learning model demonstrating how eye movement can be used to estimate programming proficiency and classify novices from experts with 72% accuracy. 
    more » « less
  5. Extending the benefits of online reading to people with reading disabilities such as dyslexia requires broader research on reading behavior in addition to existing small-scale eye-tracking studies. We conduct the first large-scale mixed-methods study of the unique reading challenges of people with dyslexia. We combine in-person interviews (N=6), online surveys (N=566) and a novel browser-based tool able to measure detailed reading behavior remotely on a controlled set of five pages (N=477) or as a browser extension (N=89) collecting long-term reading behavior data on self-selected pages. We find a variety of text and page layout factors that pose challenges to readers with and without dyslexia, and identify in-browser reading behaviors associated with dyslexia. Findings point toward improvements to technologies for identifying struggling readers, and to ways to improve the layout and appearance of online articles to improve reading ease for people with and without dyslexia. 
    more » « less