skip to main content


Title: Faculty and student perceptions of instructional servingness in gateway mathematics courses at a Hispanic-Serving Institution
Research exploring how Hispanic-Serving Institutions (HSIs) serve Latin* STEM students has largely focused on features of organizational structures (e.g., support programs), but minimally examined instruction and classroom experiences. This is an important gap to fill, especially in gateway mathematics courses, where faculty relationships and quality of instruction impact Latin* students’ persistence and identities in STEM. To advance such research, this report presents findings from an analysis of how perspectives from HSI mathematics faculty and students about instruction in introductory statistics converged and diverged in terms of serving Latin* populations. We present two illustrative cases of dissonant and resonant perspectives on serving Latin* students through instruction that frames mathematical ability expansively (e.g., not limited to being fast or correct). We conclude with research and practice implications.  more » « less
Award ID(s):
1953472
NSF-PAR ID:
10403092
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Lischka, A.; Dyer, E. B.; Jones, R. S.; Lovett, J. N.; Strayer, J.; & Drown, S.
Date Published:
Journal Name:
Proceedings of the 44th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education
Page Range / eLocation ID:
444-452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND. Calculus instruction is underexamined as a source of racialized and gendered inequity in higher education, despite research that documents minoritized students’ marginalizing experiences in undergraduate mathematics classes. This study fills this research gap by investigating mathematics faculty’s perceptions of the significance of race and gender to calculus instruction at a large, public, historically white research university. METHODS. Theories of colorblind racism and dysconsciousness guided a critical discourse analysis of seven undergraduate calculus faculty’s perceptions of instructional events. FINDINGS. Our analysis revealed two dominant discourses: (i) Race and gender are insignificant social markers in undergraduate calculus; and (ii) Instructional events can be objectively deemed race- and gender-neutral. We illustrate how calculus faculty varyingly engaged these colorblind discourses as well as discourses that challenged such conceptions of instruction. We also highlight how faculty dysconsciousness in reports of instructional practices reflect potential operationalization of dominant discourses that reinforce colorblind racism. CONTRIBUTION. With limited research on faculty perspectives on racial equity in mathematics, our study documents how color-evasive, gender-neutral discourses among mathematics faculty shape orientations to instruction that reinforce the gatekeeping role of calculus in STEM higher education. Implications are provided for race- and gender-conscious undergraduate mathematics instruction and faculty development. 
    more » « less
  2. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less
  3. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less
  4. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less
  5. null (Ed.)
    Undergraduate mathematics education can be experienced in discouraging and marginalizing ways among Black students, Latin students, and white women. Precalculus and calculus courses, in particular, operate as gatekeepers that contribute to racialized and gendered attrition in persistence with mathematics coursework and pursuits in STEM (science, technology, engineering, and mathematics). However, student perceptions of instruction in these introductory mathematics courses have yet to be systematically examined as a contributor to such attrition. This paper presents findings from a study of 20 historically marginalized students’ perceptions of precalculus and calculus instruction to document features that they found discouraging and marginalizing. Our analysis revealed how students across different race-gender identities reported stereotyping as well as issues of representation in introductory mathematics classrooms and STEM fields as shaping their perceptions of instruction. These perceptions pointed to the operation of three racialized and gendered mechanisms in instruction: (i) creating differential opportunities for participation and support, (ii) limiting support from same-race, same-gender peers to manage negativity in instruction, and (iii) activating exclusionary ideas about who belongs in STEM fields. We draw on our findings to raise implications for research and practice in undergraduate mathematics education. 
    more » « less