skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selenium Deprivation Alters Cytoskeletal Structure in Human Umbilical Vein Endothelial Cells (HUVECS)
Aging and the loss of functional reserve capacity is an intrinsic feature of life driven by various factors including genetics, lifestyle, and nutrition. Nutrient signaling has been shown to modulate the onset, progression, and/or delay of many age-associated diseases including cardiovascular disease and neurodegenerative decline. While glycemic and lipid flux have been linked to the premature appearance of in vitro biomarkers of aging, the role of trace metals in age-associated cellular changes remain less clear. The trace metal Selenium (Se) is an essential trace mineral that supports many bodily processes including free radical scavenging, thyroid function, and maintenance of cognitive ability. Our research focused on the potential cellular changes in Human Umbilical Vascular Endothelial Cells (HUVECs) in response to Se deprivation. Exposed to a 48-hour continuous reduced Se exposure, we observed a reduced f-actin protein and gene expression. Interestingly, we observed a compensatory increase in the intermediate filament vimentin, which suggest that Se may have an important role in cytoskeletal maintenance and rearrangement. Keywords: Selenium; Endothelial; Oxidative stress; Vimentin; Actin; Nutrients; Aging  more » « less
Award ID(s):
2030553
PAR ID:
10403179
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Novel research in sciences
Volume:
14
Issue:
2
ISSN:
2688-836X
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Santos, AL (Ed.)
    Peroxisomes are key regulators of cellular and metabolic homeostasis. These organelles play important roles in redox metabolism, the oxidation of very-long-chain fatty acids (VLCFAs), and the biosynthesis of ether phospholipids. Given the essential role of peroxisomes in cellular homeostasis, peroxisomal dysfunction has been linked to various pathological conditions, tissue functional decline, and aging. In the past few decades, a variety of cellular signaling and metabolic changes have been reported to be associated with defective peroxisomes, suggesting that many cellular processes and functions depend on peroxisomes. Peroxisomes communicate with other subcellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. These inter-organelle communications are highly linked to the key mechanisms by which cells surveil defective peroxisomes and mount adaptive responses to protect them from damages. In this review, we highlight the major cellular changes that accompany peroxisomal dysfunction and peroxisomal inter-organelle communication through membrane contact sites, metabolic signaling, and retrograde signaling. We also discuss the age-related decline of peroxisomal protein import and its role in animal aging and age-related diseases. Unlike other organelle stress response pathways, such as the unfolded protein response (UPR) in the ER and mitochondria, the cellular signaling pathways that mediate stress responses to malfunctioning peroxisomes have not been systematically studied and investigated. Here, we coin these signaling pathways as “peroxisomal stress response pathways”. Understanding peroxisomal stress response pathways and how peroxisomes communicate with other organelles are important and emerging areas of peroxisome research. 
    more » « less
  2. null (Ed.)
    Vascular cells restructure extracellular matrix in response to aging or changes in mechanical loading. Here, we characterized collagen architecture during age-related aortic remodeling in atherosclerosis-prone mice. We hypothesized that changes in collagen fiber orientation reflect an altered balance between passive and active forces acting on the arterial wall. We examined two factors that can alter this balance, endothelial dysfunction and reduced smooth muscle cell (SMC) contractility. Collagen fiber organization was visualized by second-harmonic generation microscopy in aortic adventitia of apolipoprotein E (apoE) knockout (KO) mice at 6 wk and 6 mo of age on a chow diet and at 7.5 mo of age on a Western diet (WD), using image analysis to yield mean fiber orientation. Adventitial collagen fibers became significantly more longitudinally oriented with aging in apoE knockout mice on chow diet. Conversely, fibers became more circumferentially oriented with aging in mice on WD. Total collagen content increased significantly with age in mice fed WD. We compared expression of endothelial nitric oxide synthase and acetylcholine-mediated nitric oxide release but found no evidence of endothelial dysfunction in older mice. Time-averaged volumetric blood flow in all groups showed no significant changes. Wire myography of aortic rings revealed decreases in active stress generation with age that were significantly exacerbated in WD mice. We conclude that the aorta displays a distinct remodeling response to atherogenic stimuli, indicated by altered collagen organization. Collagen reorganization can occur in the absence of altered hemodynamics and may represent an adaptive response to reduced active stress generation by vascular SMCs. NEW & NOTEWORTHY The following major observations were made in this study: 1) aortic adventitial collagen fibers become more longitudinally oriented with aging in apolipoprotein E knockout mice fed a chow diet; 2) conversely, adventitial collagen fibers become more circumferentially oriented with aging in apoE knockout mice fed a high-fat diet; 3) adventitial collagen content increases significantly with age in mice on a high-fat diet; 4) these alterations in collagen organization occur largely in the absence of hemodynamic changes; and 5) circumferential reorientation of collagen is associated with decreased active force generation (contractility) in aged mice on a high-fat diet. 
    more » « less
  3. Abstract Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F‐actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non‐mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS‐CoV, or bacteria such asListeriaandStreptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract herehttps://youtu.be/YPfoddqvz-g. 
    more » « less
  4. The cytoskeleton is a complex network of interconnected biopolymers consisting of actin filaments, microtubules, and intermediate filaments. These biopolymers work in concert to transmit cell-generated forces to the extracellular matrix required for cell motility, wound healing, and tissue maintenance. While we know cell-generated forces are driven by actomyosin contractility and balanced by microtubule network resistance, the effect of intermediate filaments on cellular forces is unclear. Using a combination of theoretical modeling and experiments, we show that vimentin intermediate filaments tune cell stress by assisting in both actomyosin-based force transmission and reinforcement of microtubule networks under compression. We show that the competition between these two opposing effects of vimentin is regulated by the microenvironment stiffness. These results reconcile seemingly contradictory results in the literature and provide a unified description of vimentin’s effects on the transmission of cell contractile forces to the extracellular matrix. 
    more » « less
  5. null (Ed.)
    Mitochondria are dynamic organelles that undergo fission and fusion. While they are essential for cellular metabolism, the effect of dysregulated mitochondrial dynamics on cellular metabolism is not fully understood. We previously found that transmembrane protein 135 ( Tmem135) plays a role in the regulation of mitochondrial dynamics in mice. Mice homozygous for a Tmem135 mutation ( Tmem135 FUN025/FUN025 ) display accelerated aging and age-related disease pathologies in the retina including the retinal pigment epithelium (RPE). We also generated a transgenic mouse line globally overexpressing the Tmem135 gene ( Tmem135 TG). In several tissues and cells that we studied such as the retina, heart, and fibroblast cells, we observed that the Tmem135 mutation causes elongated mitochondria, while overexpression of Tmem135 results in fragmented mitochondria. To investigate how abnormal mitochondrial dynamics affect metabolic signatures of tissues and cells, we identified metabolic changes in primary RPE cell cultures as well as heart, cerebellum, and hippocampus isolated from Tmem135 FUN025/FUN025 mice (fusion > fission) and Tmem135 TG mice (fusion < fission) using nuclear magnetic resonance spectroscopy. Metabolomics analysis revealed a tissue-dependent response to Tmem135 alterations, whereby significant metabolic changes were observed in the heart of both Tmem135 mutant and TG mice as compared to wild-type, while negligible effects were observed in the cerebellum and hippocampus. We also observed changes in Tmem135 FUN025/FUN025 and Tmem135 TG RPE cells associated with osmosis and glucose and phospholipid metabolism. We observed depletion of NAD + in both Tmem135 FUN025/FUN025 and Tmem135 TG RPE cells, indicating that imbalance in mitochondrial dynamics to both directions lowers the cellular NAD + level. Metabolic changes identified in this study might be associated with imbalanced mitochondrial dynamics in heart tissue and RPE cells which can likely lead to functional abnormalities. Impact statement Mitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells. 
    more » « less