Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.
- Award ID(s):
- 2145967
- PAR ID:
- 10403228
- Editor(s):
- Daròs, José-Antonio
- Date Published:
- Journal Name:
- PLOS Pathogens
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1553-7374
- Page Range / eLocation ID:
- e1010850
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Transcription polymerases can exhibit an unusual mode of regenerating certain RNA templates from RNA, yielding systems that can replicate and evolve with RNA as the information carrier. Two classes of pathogenic RNAs (hepatitis delta virus in animals and viroids in plants) are copied by host transcription polymerases. Using in vitro RNA replication by the transcription polymerase of T7 bacteriophage as an experimental model, we identify hundreds of new replicating RNAs, define three mechanistic hallmarks of replication (subterminal de novo initiation, RNA shape-shifting, and interrupted rolling-circle synthesis), and describe emergence from DNA seeds as a mechanism for the origin of novel RNA replicons. These results inform models for the origins and replication of naturally occurring RNA genetic elements and suggest a means by which diverse RNA populations could be propagated as hereditary material in cellular contexts.
-
Abstract Activation-induced deoxycytidine deaminase (AID) initiates somatic hypermutation (SHM) in immunoglobulin variable (IgV) genes to produce high-affinity antibodies. SHM requires IgV transcription by RNA polymerase II (Pol II). A eukaryotic transcription system including AID has not been reported previously. Here, we reconstitute AID-catalyzed deamination during Pol II transcription elongation in conjunction with DSIF transcription factor. C→T mutations occur at similar frequencies on non-transcribed strand (NTS) and transcribed strand (TS) DNA. In contrast, bacteriophage T7 Pol generates NTS mutations predominantly. AID-Pol II mutations are strongly favored in WRC and WGCW overlapping hot motifs (W = A or T, R = A or G) on both DNA strands. Single mutations occur on 70% of transcribed DNA clones. Mutations are correlated over a 15 nt distance in multiply mutated clones, suggesting that deaminations are catalyzed processively within a stalled or backtracked transcription bubble. Site-by-site comparisons for biochemical and human memory B-cell mutational spectra in an IGHV3-23*01 target show strongly favored deaminations occurring in the antigen-binding complementarity determining regions (CDR) compared to the framework regions (FW). By exhibiting consistency with B-cell SHM, our in vitro data suggest that biochemically defined reconstituted Pol II transcription systems can be used to investigate how, when and where AID is targeted.more » « less
-
Abstract RNA polymerase III (Pol III) transcription initiation requires the action of the transcription factor IIIB (TFIIIB) and is highly regulated. Here, we determine the structures of Pol III pre-initiation complexes (PICs) using single particle cryo-electron microscopy (cryo-EM). We observe stable Pol III–TFIIIB complexes using nucleic acid scaffolds mimicking various functional states, in which TFIIIB tightly encircles the upstream promoter DNA. There is an intricate interaction between TFIIIB and Pol III, which stabilizes the winged-helix domains of the C34 subunit of Pol III over the active site cleft. The architecture of Pol III PIC more resembles that of the Pol II PIC than the Pol I PIC. In addition, we also obtain a 3D reconstruction of Pol III in complex with TFIIIB using the elongation complex (EC) scaffold, shedding light on the mechanism of facilitated recycling of Pol III prior to transcription re-initiation.
-
null (Ed.)The sequence of the DNA template has long been thought to influence the rate of transcription by DNA-dependent RNA polymerases, but the influence of DNA sequence on transcription elongation properties of eukaryotic RNA polymerase I (Pol I) from Saccharomyces cerevisiae has not been defined. In this study, we observe changes in dinucleotide production, transcription elongation complex stability, and Pol I pausing in vitro in response to downstream DNA. In vitro studies demonstrate that AT-rich downstream DNA enhances pausing by Pol I and inhibits Pol I nucleolytic cleavage activity. Analysis of Pol I native elongating transcript sequencing data in Saccharomyces cerevisiae suggests that these downstream sequence elements influence Pol I in vivo . Native elongating transcript sequencing studies reveal that Pol I occupancy increases as downstream AT content increases and decreases as downstream GC content increases. Collectively, these data demonstrate that the downstream DNA sequence directly impacts the kinetics of transcription elongation prior to the sequence entering the active site of Pol I both in vivo and in vitro .more » « less