skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: DNA Ligase I Circularises Potato Spindle Tuber Viroid RNA in a Biomolecular Condensate
ABSTRACT Viroids are single‐stranded circular noncoding RNAs that mainly infect crops. Upon infection, nuclear‐replicating viroids engage host DNA‐dependent RNA polymerase II for RNA‐templated transcription, which is facilitated by a host protein TFIIIA‐7ZF. The sense‐strand and minus‐strand RNA intermediates are differentially localised to the nucleolus and nucleoplasm regions, respectively. The factors and function underlying the differential localisation of viroid RNAs have not been fully elucidated. The sense‐strand RNA intermediates are cleaved into linear monomers by a yet‐to‐be‐identified RNase III‐type enzyme and ligated to form circular RNA progeny by DNA ligase I (LIG1). The subcellular compartment for the ligation reaction has not been characterised. Here, we show that LIG1 and potato spindle tuber viroid (PSTVd) colocalise near the nucleolar region inNicotiana benthamianaprotoplasts. The colocalised region is also the highly condensed region of sense‐strand PSTVd RNA, indicating that PSTVd RNA and LIG1 form a biomolecular condensate for RNA processing. This finding expands the function of biomolecular condensates to the infection of subviral pathogens. In addition, this knowledge of viroid biogenesis will contribute to exploring thousands of viroid‐like RNAs that have been recently identified.  more » « less
Award ID(s):
2350392 2145967 2410009 1906060
PAR ID:
10574475
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Molecular Plant Pathology
Volume:
25
Issue:
12
ISSN:
1464-6722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Daròs, José-Antonio (Ed.)
    Viroids, a fascinating group of plant pathogens, are subviral agents composed of single-stranded circular noncoding RNAs. It is well-known that nuclear-replicating viroids exploit host DNA-dependent RNA polymerase II (Pol II) activity for transcription from circular RNA genome to minus-strand intermediates, a classic example illustrating the intrinsic RNA-dependent RNA polymerase activity of Pol II. The mechanism for Pol II to accept single-stranded RNAs as templates remains poorly understood. Here, we reconstituted a robust in vitro transcription system and demonstrated that Pol II also accepts minus-strand viroid RNA template to generate plus-strand RNAs. Further, we purified the Pol II complex on RNA templates for nano-liquid chromatography-tandem mass spectrometry analysis and identified a remodeled Pol II missing Rpb4, Rpb5, Rpb6, Rpb7, and Rpb9, contrasting to the canonical 12-subunit Pol II or the 10-subunit Pol II core on DNA templates. Interestingly, the absence of Rpb9, which is responsible for Pol II fidelity, explains the higher mutation rate of viroids in comparison to cellular transcripts. This remodeled Pol II is active for transcription with the aid of TFIIIA-7ZF and appears not to require other canonical general transcription factors (such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TFIIS), suggesting a distinct mechanism/machinery for viroid RNA-templated transcription. Transcription elongation factors, such as FACT complex, PAF1 complex, and SPT6, were also absent in the reconstituted transcription complex. Further analyses of the critical zinc finger domains in TFIIIA-7ZF revealed the first three zinc finger domains pivotal for RNA template binding. Collectively, our data illustrated a distinct organization of Pol II complex on viroid RNA templates, providing new insights into viroid replication, the evolution of transcription machinery, as well as the mechanism of RNA-templated transcription. 
    more » « less
  2. Abstract The prevailing view of intracellular RNA trafficking in eukaryotic cells is that RNAs transcribed in the nucleus either stay in the nucleus or cross the nuclear envelope, entering the cytoplasm for function. However, emerging evidence illustrates that numerous functional RNAs move in the reverse direction, from the cytoplasm to the nucleus. The mechanism underlying RNA nuclear import has not been well elucidated. Viroids are single-stranded circular noncoding RNAs that infect plants. Using Nicotiana benthamiana, tomato (Solanum lycopersicum), and nuclear-replicating viroids as a model, we showed that cellular IMPORTIN ALPHA-4 (IMPa-4) is likely involved in viroid RNA nuclear import, empirically supporting the involvement of Importin-based cellular pathway in RNA nuclear import. We also confirmed the involvement of a cellular protein (viroid RNA-binding protein 1 [VIRP1]) that binds both IMPa-4 and viroids. Moreover, a conserved C-loop in nuclear-replicating viroids serves as a key signal for nuclear import. Disrupting C-loop impairs VIRP1 binding, viroid nuclear accumulation, and infectivity. Further, C-loop exists in a subviral satellite noncoding RNA that relies on VIRP1 for nuclear import. These results advance our understanding of subviral RNA infection and the regulation of RNA nuclear import. 
    more » « less
  3. Long noncoding RNAs (lncRNAs) are commonly defined as transcripts that lack protein-coding capacity and are longer than 200 nucleotides. Since the emergence of next-generation sequencing technologies in this century, thousands of lncRNAs have been identified from nearly all living organisms. Notably, various pathogens also express their own lncRNAs in host cells during infection. In plants, many lncRNAs exhibit dynamic expression patterns in response to environmental stimuli, including pathogen attacks. In contrast to well-established methods in identifying such lncRNAs, the current understanding of lncRNAs’ functional mechanisms is in its infancy. Some lncRNAs serve as precursors for generating small RNAs or serve as target mimics to sequester functional small RNAs, which have been extensively reviewed in the literature. This review focuses on the emerging evidence supporting that certain lncRNAs function as negative or positive regulators of plant immunity. A common theme is that those regulations rely on specific interactions between lncRNAs and key regulatory proteins. Viroids as single-stranded circular noncoding RNAs provide a handle to investigate how RNA local motifs render interaction specificity between lncRNAs and regulatory proteins. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
  4. TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function as programmable RNA-guided homing endonucleases in bacteria, driving transposon maintenance through DNA double-strand break–stimulated homologous recombination. In this work, we uncovered molecular mechanisms of the transposition life cycle of IS607-family elements that, notably, also encode group I introns. We identified specific features for a candidate “IStron” fromClostridium botulinumthat allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts evolved an ability to balance competing and mutually exclusive activities that promote selfish transposon spread while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multifunctional utility of transposon-encoded noncoding RNAs. 
    more » « less
  5. Abstract Double-strand breaks (DSBs) in DNA are challenging to repair. Cells employ at least three DSB-repair mechanisms, with a preference for non-homologous end joining (NHEJ) over homologous recombination (HR) and microhomology-mediated end joining (MMEJ). While most eukaryotic DNA is transcribed into RNA, providing complementary genetic information, much remains unknown about the direct impact of RNA on DSB-repair outcomes and its role in DSB-repair via end joining. Here, we show that both sense and antisense-transcript RNAs impact DSB repair in a sequence-specific manner in wild-type human and yeast cells. Depending on its sequence complementarity with the broken DNA ends, a transcript RNA can promote repair of a DSB or a double-strand gap in its DNA gene via NHEJ or MMEJ, independently from DNA synthesis. The results demonstrate a role of transcript RNA in directing the way DSBs are repaired in DNA, suggesting that RNA may directly modulate genome stability and evolution. 
    more » « less