skip to main content


Title: Contrastive Trajectory Learning for Tour Recommendation
The main objective of Personalized Tour Recommendation (PTR) is to generate a sequence of point-of-interest (POIs) for a particular tourist, according to the user-specific constraints such as duration time, start and end points, the number of attractions planned to visit, and so on. Previous PTR solutions are based on either heuristics for solving the orienteering problem to maximize a global reward with a specified budget or approaches attempting to learn user visiting preferences and transition patterns with the stochastic process or recurrent neural networks. However, existing learning methodologies rely on historical trips to train the model and use the next visited POI as the supervised signal, which may not fully capture the coherence of preferences and thus recommend similar trips to different users, primarily due to the data sparsity problem and long-tailed distribution of POI popularity. This work presents a novel tour recommendation model by distilling knowledge and supervision signals from the trips in a self-supervised manner. We propose Contrastive Trajectory Learning for Tour Recommendation (CTLTR), which utilizes the intrinsic POI dependencies and traveling intent to discover extra knowledge and augments the sparse data via pre-training auxiliary self-supervised objectives. CTLTR provides a principled way to characterize the inherent data correlations while tackling the implicit feedback and weak supervision problems by learning robust representations applicable for tour planning. We introduce a hierarchical recurrent encoder-decoder to identify tourists’ intentions and use the contrastive loss to discover subsequence semantics and their sequential patterns through maximizing the mutual information. Additionally, we observe that a data augmentation step as the preliminary of contrastive learning can solve the overfitting issue resulting from data sparsity. We conduct extensive experiments on a range of real-world datasets and demonstrate that our model can significantly improve the recommendation performance over the state-of-the-art baselines in terms of both recommendation accuracy and visiting orders.  more » « less
Award ID(s):
2030249
NSF-PAR ID:
10403311
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Intelligent Systems and Technology
Volume:
13
Issue:
1
ISSN:
2157-6904
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion has recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance the tensor completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods. 
    more » « less
  2. Multivariate time-series data are frequently observed in critical care settings and are typically characterized by sparsity (missing information) and irregular time intervals. Existing approaches for learning representations in this domain handle these challenges by either aggregation or imputation of values, which in-turn suppresses the fine-grained information and adds undesirable noise/overhead into the machine learning model. To tackle this problem, we propose a S elf-supervised Tra nsformer for T ime- S eries (STraTS) model, which overcomes these pitfalls by treating time-series as a set of observation triplets instead of using the standard dense matrix representation. It employs a novel Continuous Value Embedding technique to encode continuous time and variable values without the need for discretization. It is composed of a Transformer component with multi-head attention layers, which enable it to learn contextual triplet embeddings while avoiding the problems of recurrence and vanishing gradients that occur in recurrent architectures. In addition, to tackle the problem of limited availability of labeled data (which is typically observed in many healthcare applications), STraTS utilizes self-supervision by leveraging unlabeled data to learn better representations by using time-series forecasting as an auxiliary proxy task. Experiments on real-world multivariate clinical time-series benchmark datasets demonstrate that STraTS has better prediction performance than state-of-the-art methods for mortality prediction, especially when labeled data is limited. Finally, we also present an interpretable version of STraTS, which can identify important measurements in the time-series data. Our data preprocessing and model implementation codes are available at https://github.com/sindhura97/STraTS . 
    more » « less
  3. null (Ed.)
    Sequential recommendation is the task of predicting the next items for users based on their interaction history. Modeling the dependence of the next action on the past actions accurately is crucial to this problem. Moreover, sequential recommendation often faces serious sparsity of item-to-item transitions in a user's action sequence, which limits the practical utility of such solutions. To tackle these challenges, we propose a Category-aware Collaborative Sequential Recommender. Our preliminary statistical tests demonstrate that the in-category item-to-item transitions are often much stronger indicators of the next items than the general item-to-item transitions observed in the original sequence. Our method makes use of item category in two ways. First, the recommender utilizes item category to organize a user's own actions to enhance dependency modeling based on her own past actions. It utilizes self-attention to capture in-category transition patterns, and determines which of the in-category transition patterns to consider based on the categories of recent actions. Second, the recommender utilizes the item category to retrieve users with similar in-category preferences to enhance collaborative learning across users, and thus conquer sparsity. It utilizes attention to incorporate in-category transition patterns from the retrieved users for the target user. Extensive experiments on two large datasets prove the effectiveness of our solution against an extensive list of state-of-the-art sequential recommendation models. 
    more » « less
  4. Learning explicit and implicit patterns in human trajectories plays an important role in many Location-Based Social Networks (LBSNs) applications, such as trajectory classification (e.g., walking, driving, etc.), trajectory-user linking, friend recommendation, etc. A particular problem that has attracted much attention recently – and is the focus of our work – is the Trajectory-based Social Circle Inference (TSCI), aiming at inferring user social circles (mainly social friendship) based on motion trajectories and without any explicit social networked information. Existing approaches addressing TSCI lack satisfactory results due to the challenges related to data sparsity, accessibility and model efficiency. Motivated by the recent success of machine learning in trajectory mining, in this paper we formulate TSCI as a novel multi-label classification problem and develop a Recurrent Neural Network (RNN)-based framework called DeepTSCI to use human mobility patterns for inferring corresponding social circles. We propose three methods to learn the latent representations of trajectories, based on: (1) bidirectional Long Short-Term Memory (LSTM); (2) Autoencoder; and (3) Variational autoencoder. Experiments conducted on real-world datasets demonstrate that our proposed methods perform well and achieve significant improvement in terms of macro-R, macro-F1 and accuracy when compared to baselines. 
    more » « less
  5. Archaeology has long faced fundamental issues of sampling and scalar representation. Traditionally, the local-to-regional-scale views of settlement patterns are produced through systematic pedestrian surveys. Recently, systematic manual survey of satellite and aerial imagery has enabled continuous distributional views of archaeological phenomena at interregional scales. However, such ‘brute force’ manual imagery survey methods are both time- and labour-intensive, as well as prone to inter-observer differences in sensitivity and specificity. The development of self-supervised learning methods (e.g. contrastive learning) offers a scalable learning scheme for locating archaeological features using unlabelled satellite and historical aerial images. However, archaeological features are generally only visible in a very small proportion relative to the landscape, while the modern contrastive-supervised learning approach typically yields an inferior performance on highly imbalanced datasets. In this work, we propose a framework to address this long-tail problem. As opposed to the existing contrastive learning approaches that typically treat the labelled and unlabelled data separately, our proposed method reforms the learning paradigm under a semi-supervised setting in order to fully utilize the precious annotated data (<7% in our setting). Specifically, the highly unbalanced nature of the data is employed as the prior knowledge in order to form pseudo negative pairs by ranking the similarities between unannotated image patches and annotated anchor images. In this study, we used 95,358 unlabelled images and 5,830 labelled images in order to solve the issues associated with detecting ancient buildings from a long-tailed satellite image dataset. From the results, our semi-supervised contrastive learning model achieved a promising testing balanced accuracy of 79.0%, which is a 3.8% improvement as compared to other state-of-the-art approaches. 
    more » « less