Published research highlights the presence of demographic bias in automated facial attribute classification. The proposed bias mitigation techniques are mostly based on supervised learning, which requires a large amount of labeled training data for generalizability and scalability. However, labeled data is limited, requires laborious annotation, poses privacy risks, and can perpetuate human bias. In contrast, self-supervised learning (SSL) capitalizes on freely available unlabeled data, rendering trained models more scalable and generalizable. However, these label-free SSL models may also introduce biases by sampling false negative pairs, especially at low-data regimes (< 200K images) under low compute settings. Further, SSL-based models may suffer from performance degradation due to a lack of quality assurance of the unlabeled data sourced from the web. This paper proposes a fully self-supervised pipeline for demographically fair facial attribute classifiers. Leveraging completely unlabeled data pseudolabeled via pre-trained encoders, diverse data curation techniques, and meta-learning-based weighted contrastive learning, our method significantly outperforms existing SSL approaches proposed for downstream image classification tasks. Extensive evaluations on the FairFace and CelebA datasets demonstrate the efficacy of our pipeline in obtaining fair performance over existing baselines. Thus, setting a new benchmark for SSL in the fairness of facial attribute classification. 
                        more » 
                        « less   
                    This content will become publicly available on November 30, 2025
                            
                            How to Improve Representation Alignment and Uniformity in Graph-Based Collaborative Filtering?
                        
                    
    
            Collaborative filtering (CF) is a prevalent technique utilized in recommender systems (RSs), and has been extensively deployed in various real-world applications. A recent study in CF focuses on improving the quality of representations from the perspective of alignment and uniformity on the hyperspheres for enhanced recommendation performance. It promotes alignment to increase the similarity between representations of interacting users and items, and enhances uniformity to have more uniformly distributed user and item representations within their respective hyperspheres. However, although alignment and uniformity are enforced by two different optimized objectives, respectively, they jointly constitute the supervised signals for model training. Models trained with only supervised signals in labeled data can inevitably overfit the noise introduced by label sampling variance, even with i.i.d. datasets. This overfitting to noise further compromises the model's generalizability and performance on unseen testing data. To address this issue, in this study, we aim to mitigate the effect caused by the sampling variance in labeled training data to improve representation generalizability from the perspective of alignment and uniformity. Representations with more generalized alignment and uniformity further lead to improved model performance on testing data. Specifically, we model the data as a user-item interaction bipartite graph, and apply a graph neural network (GNN) to learn the user and item representations. This graph modeling approach allows us to integrate self-supervised signals into the RS, by performing self-supervised contrastive learning on the user and item representations from the perspective of label-irrelevant alignment and uniformity. Since the representations are less dependent on label supervision, they can capture more label-irrelevant data structures and patterns, leading to more generalized alignment and uniformity. We conduct extensive experiments on three benchmark datasets to demonstrate the superiority of our framework (i.e., improved performance and faster convergence speed). Our codes: https://github.com/zyouyang/AUPlus 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10581231
- Publisher / Repository:
- Proceedings of the International AAAI Conference on Web and Social Media (ICWSM)
- Date Published:
- Journal Name:
- Proceedings of the International AAAI Conference on Web and Social Media
- Volume:
- 18
- ISSN:
- 2162-3449
- Page Range / eLocation ID:
- 1148 to 1159
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Producing high-quality labeled data is a challenge in any supervised learning problem, where in many cases, human involvement is necessary to ensure the label quality. However, human annotations are not flawless, especially in the case of a challenging problem. In nontrivial problems, the high disagreement among annotators results in noisy labels, which affect the performance of any machine learning model. In this work, we consider three noise reduction strategies to improve the label quality in the Article-Comment Alignment Problem, where the main task is to classify article-comment pairs according to their relevancy level. The first considered labeling disagreement reduction strategy utilizes annotators' background knowledge during the label aggregation step. The second strategy utilizes user disagreement during the training process. In the third and final strategy, we ask annotators to perform corrections and relabel the examples with noisy labels. We deploy these strategies and compare them to a resampling strategy for addressing the class imbalance, another common supervised learning challenge. These alternatives were evaluated on ACAP, a multiclass text pairs classification problem with highly imbalanced data, where one of the classes represents at most 15% of the dataset's entire population. Our results provide evidence that considered strategies can reduce disagreement between annotators. However, data quality improvement is insufficient to enhance classification accuracy in the article-comment alignment problem, which exhibits a high-class imbalance. The model performance is enhanced for the same problem by addressing the imbalance issue with a weight loss-based class distribution resampling. We show that allowing the model to pay more attention to the minority class during the training process with the presence of noisy examples improves the test accuracy by 3%.more » « less
- 
            Inspired by the extensive success of deep learning, graph neural networks (GNNs) have been proposed to learn expressive node representations and demonstrated promising performance in various graph learning tasks. However, existing endeavors predominately focus on the conventional semi-supervised setting where relatively abundant gold-labeled nodes are provided. While it is often impractical due to the fact that data labeling is unbearably laborious and requires intensive domain knowledge, especially when considering the heterogeneity of graph-structured data. Under the few-shot semi-supervised setting, the performance of most of the existing GNNs is inevitably undermined by the overfitting and oversmoothing issues, largely owing to the shortage of labeled data. In this paper, we propose a decoupled network architecture equipped with a novel meta-learning algorithm to solve this problem. In essence, our framework Meta-PN infers high-quality pseudo labels on unlabeled nodes via a meta-learned label propagation strategy, which effectively augments the scarce labeled data while enabling large receptive fields during training. Extensive experiments demonstrate that our approach offers easy and substantial performance gains compared to existing techniques on various benchmark datasets. The implementation and extended manuscript of this work are publicly available at https://github.com/kaize0409/Meta-PN.more » « less
- 
            Human activity recognition (HAR) from wearable sensor data has recently gained widespread adoption in a number of fields. However, recognizing complex human activities, postural and rhythmic body movements (e.g., dance, sports) is challenging due to the lack of domain-specific labeling information, the perpetual variability in human movement kinematics profiles due to age, sex, dexterity and the level of professional training. In this paper, we propose a deep activity recognition model to work with limited labeled data, both for simple and complex human activities. To mitigate the intra- and inter-user spatio-temporal variability of movements, we posit novel data augmentation and domain normalization techniques. We depict a semi-supervised technique that learns noise and transformation invariant feature representation from sparsely labeled data to accommodate intra-personal and inter-user variations of human movement kinematics. We also postulate a transfer learning approach to learn domain invariant feature representations by minimizing the feature distribution distance between the source and target domains. We showcase the improved performance of our proposed framework, AugToAct, using a public HAR dataset. We also design our own data collection, annotation and experimental setup on complex dance activity recognition steps and kinematics movements where we achieved higher performance metrics with limited label data compared to simple activity recognition tasks.more » « less
- 
            Recent advancements in deep learning-based wearable human action recognition (wHAR) have improved the capture and classification of complex motions, but adoption remains limited due to the lack of expert annotations and domain discrepancies from user variations. Limited annotations hinder the model's ability to generalize to out-of-distribution samples. While data augmentation can improve generalizability, unsupervised augmentation techniques must be applied carefully to avoid introducing noise. Unsupervised domain adaptation (UDA) addresses domain discrepancies by aligning conditional distributions with labeled target samples, but vanilla pseudo-labeling can lead to error propagation. To address these challenges, we propose μDAR, a novel joint optimization architecture comprised of three functions: (i) consistency regularizer between augmented samples to improve model classification generalizability, (ii) temporal ensemble for robust pseudo-label generation and (iii) conditional distribution alignment to improve domain generalizability. The temporal ensemble works by aggregating predictions from past epochs to smooth out noisy pseudo-label predictions, which are then used in the conditional distribution alignment module to minimize kernel-based class-wise conditional maximum mean discrepancy (kCMMD) between the source and target feature space to learn a domain invariant embedding. The consistency-regularized augmentations ensure that multiple augmentations of the same sample share the same labels; this results in (a) strong generalization with limited source domain samples and (b) consistent pseudo-label generation in target samples. The novel integration of these three modules in μDAR results in a range of ~ 4-12% average macro-F1 score improvement over six state-of-the-art UDA methods in four benchmark wHAR datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
