The ubiquity of the Internet plays a pivotal role in connecting individuals and facilitating easy access to various essential services. As of 2022, the International Telecommunication Union (ITU) reports that approximately 5.3 billion people are connected to the internet, underscoring its widespread coverage and indispensability in our daily lives. This expansive coverage enables a myriad of services, including communication, e-banking, e-commerce, online social security access, medical reporting, education, entertainment, weather information, traffic monitoring, online surveys, and more. However, this open platform also exposes vulnerabilities to malicious users who actively seek to exploit weaknesses in the virtual domain, aiming to gain credentials, financial benefits, or reveal critical information through the use of malware. This constant threat poses a serious challenge in safeguarding sensitive information in cyberspace. To address this challenge, we propose the use of ensemble and deep neural network (DNN) based machine learning (ML) techniques to detect malicious intent packets before they can infiltrate or compromise systems and applications. Attackers employ various tactics to evade existing security systems, such as antivirus or intrusion detection systems, necessitating a robust defense mechanism. Our approach involves implementing an ensemble, a collection of diverse classifiers capable of capturing different attack patterns and better generalizing from highly relevant features, thus enhancing protection against a variety of attacks compared to a single classifier. Given the highly unbalanced dataset, the ensemble classifier effectively addresses this condition, and oversampling is also employed to minimize bias toward the majority class. To prevent overfitting, we utilize Random Forest (RF) and the dropout technique in the DNN. Furthermore, we introduce a DNN to assess its ability to recognize complex attack patterns and variations compared to the ensemble approach. Various metrics, such as classification accuracy, precision, recall, F1-score, confusion matrix are utilized to measure the performance of our proposed system, with the aim of outperforming current state-of-the-art intrusion detection systems. 
                        more » 
                        « less   
                    
                            
                            Bridging the Gap: Unifying the Training and Evaluation of Neural Network Binary Classifiers
                        
                    
    
            While neural network binary classifiers are often evaluated on metrics such as Accuracy and F1-Score, they are commonly trained with a cross-entropy objective. How can this training-evaluation gap be addressed? While specific techniques have been adopted to optimize certain confusion matrix based metrics, it is challenging or impossible in some cases to generalize the techniques to other metrics. Adversarial learning approaches have also been proposed to optimize networks via confusion matrix based metrics, but they tend to be much slower than common training methods. In this work, we propose a unifying approach to training neural network binary classifiers that combines a differentiable approximation of the Heaviside function with a probabilistic view of the typical confusion matrix values using soft sets. Our theoretical analysis shows the benefit of using our method to optimize for a given evaluation metric, such as F1-Score, with soft sets, and our extensive experiments show the effectiveness of our approach in several domains. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1924802
- PAR ID:
- 10403349
- Editor(s):
- Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A.
- Date Published:
- Journal Name:
- Advances in neural information processing systems
- Volume:
- 35
- ISSN:
- 1049-5258
- Page Range / eLocation ID:
- 23121-23134
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quantification of all types of uncertainty helps to establish reliability in any analysis. This research focuses on uncertainty in two attribute levels of wetland classification and creates visualization tools to guide analysis of spatial uncertainty patterns over several scales. A novel variant of confusion matrix analysis compares the Cowardin and Hydrogeomorphic wetland classification systems, identifying areas and types of misclassification for binary and multivariate categories. The specific focus on uncertainty in the paper refers to categorical consistency, that is, agreement between the two classification systems, rather than comparing observed data to ground truth. Consistency is quantified using confusion matrix analysis. Aggregation across progressive focal windows transforms the confusion matrix into a multiscale data pyramid for quick determination of where attribute uncertainty is highly variant, and at what spatial resolutions classification inconsistencies emerge. The focal pyramids summarize precision, recall, and F1 scores to visualize classification differences across spatial scales. Findings show that the F1 scores appear most informative on agreement about wetlands misclassification at both coarse and fine attribute scales. The pyramid organizes multi-scale uncertainty in a single unified framework and can be “sliced” to view individual focal levels of attribute consistency. Results demonstrate how the confusion matrix can be used to quantify the percentage of a study area in which inconsistencies occur reflecting wetland presence and type. The research provides confusion metrics and display tools to focus attention on specific areas of large data sets where attribute uncertainty patterns may be complex, thus reducing land managers’ workloads by highlighting areas of uncertainty where field checking might be appropriate, and improving analytics by providing visualization tools to quickly see where such areas occur.more » « less
- 
            This paper studies how neural network architecture affects the speed of training. We introduce a simple concept called gradient confusion to help formally analyze this. When gradient confusion is high, stochastic gradients produced by different data samples may be negatively correlated, slowing down convergence. But when gradient confusion is low, data samples interact harmoniously, and training proceeds quickly. Through theoretical and experimental results, we demonstrate how the neural network architecture affects gradient confusion, and thus the efficiency of training. Our results show that, for popular initialization techniques, increasing the width of neural networks leads to lower gradient confusion, and thus faster model training. On the other hand, increasing the depth of neural networks has the opposite effect. Our results indicate that alternate initialization techniques or networks using both batch normalization and skip connections help reduce the training burden of very deep networks.more » « less
- 
            null (Ed.)This paper considers fair probabilistic classification where the outputs of primary interest are predicted probabilities, commonly referred to as scores. We formulate the problem of transforming scores to satisfy fairness constraints while minimizing the loss in utility. The formulation can be applied either to post-process classifier outputs or to pre-process training data, thus allowing maximum freedom in selecting a classification algorithm. We derive a closed-form expression for the optimal transformed scores and a convex optimization problem for the transformation parameters. In the population limit, the transformed score function is the fairness-constrained minimizer of cross-entropy with respect to the optimal unconstrained scores. In the finite sample setting, we propose to approach this solution using a combination of standard probabilistic classifiers and ADMM. Comprehensive experiments comparing to 10 existing methods show that the proposed FairScoreTransformer has advantages for score-based metrics such as Brier score and AUC while remaining competitive for binary label-based metrics such as accuracy.more » « less
- 
            The continuous evolution of the IoT paradigm has been extensively applied across various application domains, including air traffic control, education, healthcare, agriculture, transportation, smart home appliances, and others. Our primary focus revolves around exploring the applications of IoT, particularly within healthcare, where it assumes a pivotal role in facilitating secure and real-time remote patient-monitoring systems. This innovation aims to enhance the quality of service and ultimately improve people’s lives. A key component in this ecosystem is the Healthcare Monitoring System (HMS), a technology-based framework designed to continuously monitor and manage patient and healthcare provider data in real time. This system integrates various components, such as software, medical devices, and processes, aimed at improvi1g patient care and supporting healthcare providers in making well-informed decisions. This fosters proactive healthcare management and enables timely interventions when needed. However, data transmission in these systems poses significant security threats during the transfer process, as malicious actors may attempt to breach security protocols.This jeopardizes the integrity of the Internet of Medical Things (IoMT) and ultimately endangers patient safety. Two feature sets—biometric and network flow metric—have been incorporated to enhance detection in healthcare systems. Another major challenge lies in the scarcity of publicly available balanced datasets for analyzing diverse IoMT attack patterns. To address this, the Auxiliary Classifier Generative Adversarial Network (ACGAN) was employed to generate synthetic samples that resemble minority class samples. ACGAN operates with two objectives: the discriminator differentiates between real and synthetic samples while also predicting the correct class labels. This dual functionality ensures that the discriminator learns detailed features for both tasks. Meanwhile, the generator produces high-quality samples that are classified as real by the discriminator and correctly labeled by the auxiliary classifier. The performance of this approach, evaluated using the IoMT dataset, consistently outperforms the existing baseline model across key metrics, including accuracy, precision, recall, F1-score, area under curve (AUC), and confusion matrix results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    