skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intelligent Anomaly Detection System Based on Ensemble and Deep Learning
The ubiquity of the Internet plays a pivotal role in connecting individuals and facilitating easy access to various essential services. As of 2022, the International Telecommunication Union (ITU) reports that approximately 5.3 billion people are connected to the internet, underscoring its widespread coverage and indispensability in our daily lives. This expansive coverage enables a myriad of services, including communication, e-banking, e-commerce, online social security access, medical reporting, education, entertainment, weather information, traffic monitoring, online surveys, and more. However, this open platform also exposes vulnerabilities to malicious users who actively seek to exploit weaknesses in the virtual domain, aiming to gain credentials, financial benefits, or reveal critical information through the use of malware. This constant threat poses a serious challenge in safeguarding sensitive information in cyberspace. To address this challenge, we propose the use of ensemble and deep neural network (DNN) based machine learning (ML) techniques to detect malicious intent packets before they can infiltrate or compromise systems and applications. Attackers employ various tactics to evade existing security systems, such as antivirus or intrusion detection systems, necessitating a robust defense mechanism. Our approach involves implementing an ensemble, a collection of diverse classifiers capable of capturing different attack patterns and better generalizing from highly relevant features, thus enhancing protection against a variety of attacks compared to a single classifier. Given the highly unbalanced dataset, the ensemble classifier effectively addresses this condition, and oversampling is also employed to minimize bias toward the majority class. To prevent overfitting, we utilize Random Forest (RF) and the dropout technique in the DNN. Furthermore, we introduce a DNN to assess its ability to recognize complex attack patterns and variations compared to the ensemble approach. Various metrics, such as classification accuracy, precision, recall, F1-score, confusion matrix are utilized to measure the performance of our proposed system, with the aim of outperforming current state-of-the-art intrusion detection systems.  more » « less
Award ID(s):
2101181
PAR ID:
10565313
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-11-88428-12-0
Page Range / eLocation ID:
137 to 142
Subject(s) / Keyword(s):
Measurement Surveys Intrusion detection Artificial neural networks Feature extraction Reliability engineering Pattern recognition cybersecurity deep neural network ensemble generalizing
Format(s):
Medium: X
Location:
Pyeong Chang, Korea, Republic of
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization. 
    more » « less
  2. Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics’ exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency. 
    more » « less
  3. Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1]. 
    more » « less
  4. The Controller Area Network (CAN) is a ubiquitous bus protocol present in the Electrical/Electronic (E/E) systems of almost all vehicles. It is vulnerable to a range of attacks once the attacker gains access to the bus through the vehicle’s attack surface. We address the problem of Intrusion Detection on the CAN bus and present a series of methods based on two classifiers trained with Auxiliary Classifier Generative Adversarial Network (ACGAN) to detect and assign fine-grained labels to Known Attacks and also detect the Unknown Attack class in a dataset containing a mixture of (Normal + Known Attacks + Unknown Attack) messages. The most effective method is a cascaded two-stage classification architecture, with the multi-class Auxiliary Classifier in the first stage for classification of Normal and Known Attacks, passing Out-of-Distribution (OOD) samples to the binary Real-Fake Classifier in the second stage for detection of the Unknown Attack class. Performance evaluation demonstrates that our method achieves both high classification accuracy and low runtime overhead, making it suitable for deployment in the resource-constrained in-vehicle environment. 
    more » « less
  5. It is estimated that by the year 2024, the total number of systems equipped with voice assistant software will exceed 8.4 billion devices globally. While these devices provide convenience to consumers, they suffer from a myriad of security issues. This paper highlights the serious privacy threats exposed by information leakage in a smart assistant's encrypted network traffic metadata. To investigate this issue, we have collected a new dataset composed of dynamic and static commands posed to an Amazon Echo Dot using data collection and cleaning scripts we developed. Furthermore, we propose the Smart Home Assistant Malicious Ensemble model (SHAME) as the new state-of-the-art Voice Command Fingerprinting classifier. When evaluated against several datasets, our attack correctly classifies encrypted voice commands with up to 99.81% accuracy on Google Home traffic and 95.2% accuracy on Amazon Echo Dot traffic. These findings show that security measures must be taken to stop internet service providers, nation-states, and network eavesdroppers from monitoring our intimate conversations. 
    more » « less