Abstract In the classical information theoretic framework, information “value” is proportional to how novel/surprising the information is. Recent work building on such notions claimed that false news spreads faster than truth online because false news is more novel and therefore surprising. However, another determinant of surprise, semantic meaning (e.g., information’s consistency or inconsistency with prior beliefs), should also influence value and sharing. Examining sharing behavior on Twitter, we observed separate relations of novelty and belief consistency with sharing. Though surprise could not be assessed in those studies, belief consistency should relate to less surprise, suggesting the relevance of semantic meaning beyond novelty. In two controlled experiments, belief-consistent (vs. belief-inconsistent) information was shared more despite consistent information being the least surprising. Manipulated novelty did not predict sharing or surprise. Thus, classical information theoretic predictions regarding perceived value and sharing would benefit from considering semantic meaning in contexts where people hold pre-existing beliefs.
more »
« less
The demand for, and avoidance of, information
Management scientists recognize that decision making depends on the information people have but lack a unified behavioral theory of the demand for (and avoidance of) information. Drawing on an existing theoretical framework in which utility depends on beliefs and the attention paid to them, we develop and test a theory of the demand for information encompassing instrumental considerations, curiosity, and desire to direct attention to beliefs one feels good about. We decompose an individual’s demand for information into the desire to refine beliefs, holding attention constant, and the desire to focus attention on anticipated beliefs, holding these beliefs constant. Because the utility of resolving uncertainty (i.e., refining beliefs) depends on the attention paid to it and more important or salient questions capture more attention, demand for information depends on the importance and salience of the question(s) it addresses. In addition, because getting new information focuses attention on one’s beliefs and people want to savor good news and ignore bad news, the desire to obtain or avoid information depends on the valence (i.e., goodness or badness) of anticipated beliefs. Five experiments (n = 2,361) test and find support for these hypotheses, looking at neutrally valenced as well as ego-relevant information. People are indeed more inclined to acquire information (a) when it feels more important, even if it cannot aid decision making (Experiments 1A and 2A); (b) when a question is more salient, manipulated through time lag (Experiments 1B and 2B); and (c) when anticipated beliefs have higher valence (Experiment 2C).
more »
« less
- Award ID(s):
- 1919453
- PAR ID:
- 10403354
- Editor(s):
- Yan Chen
- Date Published:
- Journal Name:
- Management Science
- Volume:
- 68
- Issue:
- 9
- ISSN:
- 2745-9934
- Page Range / eLocation ID:
- 6454-6476
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Researchers across many disciplines seek to understand how misinformation spreads with a view toward limiting its impact. One important question in this research is how people determine whether a given piece of news is real or fake. In the current article, we discuss the value of signal detection theory (SDT) in disentangling two distinct aspects in the identification of fake news: (a) ability to accurately distinguish between real news and fake news and (b) response biases to judge news as real or fake regardless of news veracity. The value of SDT for understanding the determinants of fake-news beliefs is illustrated with reanalyses of existing data sets, providing more nuanced insights into how partisan bias, cognitive reflection, and prior exposure influence the identification of fake news. Implications of SDT for the use of source-related information in the identification of fake news, interventions to improve people’s skills in detecting fake news, and the debunking of misinformation are discussed.more » « less
-
Feldman, Anna; Da San Martino, Giovanni; Leberknight, Chris; Nakov, Preslav (Ed.)The explosion of online health news articles runs the risk of the proliferation of low-quality information. Within the existing work on fact-checking, however, relatively little attention has been paid to medical news. We present a health news classification task to determine whether medical news articles satisfy a set of review criteria deemed important by medical experts and health care journalists. We present a dataset of 1,119 health news paired with systematic reviews. The review criteria consist of six elements that are essential to the accuracy of medical news. We then present experiments comparing the classical token-based approach with the more recent transformer-based models. Our results show that detecting qualitative lapses is a challenging task with direct ramifications in misinformation, but is an important direction to pursue beyond assigning True or False labels to short claims.more » « less
-
Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision-making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision-making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; geoscientists who have spent the past several months studying strike-slip faults will have this terrain most readily available in their mind when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we outline the key insights from decision-making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision-making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists' decision-making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision-making, wherein debiased decision-making is an emergent property of the coordinated and integrated processing of human–AI collaborative teams.more » « less
-
Inquisitive questions — open-ended, curiosity-driven questions people ask as they read — are an integral part of discourse processing and comprehension. Recent work in NLP has taken advantage of question generation capabilities of LLMs to enhance a wide range of applications. But the space of inquisitive questions is vast: many questions can be evoked from a given context. So which of those should be prioritized to find answers? Linguistic theories have not yet provided an answer. This paper presents QSALIENCE, a salience predictor of inquisitive questions. QSALIENCE is instruction-tuned over a dataset of linguist-annotated salience scores of 1,766 (context, question) pairs. A question scores high on salience if answering it would greatly enhance the understanding of the text. The authors show that highly salient questions are empirically more likely to be answered in the same article, bridging potential questions with Questions Under Discussion. They further validate their findings by showing that answering salient questions is an indicator of summarization quality in news.more » « less
An official website of the United States government

