skip to main content


Title: How can geologic decision-making under uncertainty be improved?
Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision-making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision-making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; geoscientists who have spent the past several months studying strike-slip faults will have this terrain most readily available in their mind when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we outline the key insights from decision-making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision-making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists' decision-making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision-making, wherein debiased decision-making is an emergent property of the coordinated and integrated processing of human–AI collaborative teams.  more » « less
Award ID(s):
1839705
NSF-PAR ID:
10189131
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Solid Earth
Volume:
10
Issue:
5
ISSN:
1869-9529
Page Range / eLocation ID:
1469 to 1488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, a geologist who confidently interprets ambiguous data as representative of a familiar category form their research (e.g., strike slip faults for expert in extensional domains) is exhibiting the availability bias, which occurs when people make judgments based on what is most dominant or accessible in memory. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we summarize the key insights from decision making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists decision making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to those strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision making, where debiased decision making is an emergent property of the coordinated and integrated processing of human-AI collaborative teams.

     
    more » « less
  2. As artificial intelligence (AI) assisted search and recommender systems have become ubiquitous in workplaces and everyday lives, understanding and accounting for fairness has gained increasing attention in the design and evaluation of such systems. While there is a growing body of computing research on measuring system fairness and biases associated with data and algorithms, the impact of human biases that go beyond traditional machine learning (ML) pipelines still remain understudied. In this Perspective Paper, we seek to develop a two-sided fairness framework that not only characterizes data and algorithmic biases, but also highlights the cognitive and perceptual biases that may exacerbate system biases and lead to unfair decisions. Within the framework, we also analyze the interactions between human and system biases in search and recommendation episodes. Built upon the two-sided framework, our research synthesizes intervention and intelligent nudging strategies applied in cognitive and algorithmic debiasing, and also proposes novel goals and measures for evaluating the performance of systems in addressing and proactively mitigating the risks associated with biases in data, algorithms, and bounded rationality. This paper uniquely integrates the insights regarding human biases and system biases into a cohesive framework and extends the concept of fairness from human-centered perspective. The extended fairness framework better reflects the challenges and opportunities in users’ interactions with search and recommender systems of varying modalities. Adopting the two-sided approach in information system design has the potential to enhancing both the effectiveness in online debiasing and the usefulness to boundedly rational users engaging in information-intensive decision-making. 
    more » « less
  3. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE 
    more » « less
  4. The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.

     
    more » « less
  5. Abstract

    Understanding why animals (including humans) choose one thing over another is one of the key questions underlying the fields of behavioural ecology, behavioural economics and psychology. Most traditional studies of food choice in animals focus on simple, single‐attribute decision tasks. However, animals in the wild are often faced with multi‐attribute choice tasks where options in the choice set vary across multiple dimensions. Multi‐attribute decision‐making is particularly relevant for flower‐visiting insects faced with deciding between flowers that may differ in reward attributes such as sugar concentration, nectar volume and pollen composition as well as non‐rewarding attributes such as colour, symmetry and odour. How do flower‐visiting insects deal with complex multi‐attribute decision tasks?

    Here we review and synthesise research on the decision strategies used by flower‐visiting insects when making multi‐attribute decisions. In particular, we review how different types of foraging frameworks (classic optimal foraging theory, nutritional ecology, heuristics) conceptualise multi‐attribute choice and we discuss how phenomena such as innate preferences, flower constancy and context dependence influence our understanding of flower choice.

    We find that multi‐attribute decision‐making is a complex process that can be influenced by innate preferences, flower constancy, the composition of the choice set and economic reward value. We argue that to understand and predict flower choice in flower‐visiting insects, we need to move beyond simplified choice sets towards a view of multi‐attribute choice which integrates the role of non‐rewarding attributes and which includes flower constancy, innate preferences and context dependence. We further caution that behavioural experiments need to consider the possibility of context dependence in the design and interpretation of preference experiments.

    We conclude with a discussion of outstanding questions for future research. We also present a conceptual framework that incorporates the multiple dimensions of choice behaviour.

     
    more » « less