skip to main content


Title: A virtuous cycle between invertebrate and robotics research: perspective on a decade of Living Machines research
Abstract

Many invertebrates are ideal model systems on which to base robot design principles due to their success in solving seemingly complex tasks across domains while possessing smaller nervous systems than vertebrates. Three areas are particularly relevant for robot designers: Research on flying and crawling invertebrates has inspired new materials and geometries from which robot bodies (their morphologies) can be constructed, enabling a new generation of softer, smaller, and lighter robots. Research on walking insects has informed the design of new systems for controlling robot bodies (their motion control) and adapting their motion to their environment without costly computational methods. And research combining wet and computational neuroscience with robotic validation methods has revealed the structure and function of core circuits in the insect brain responsible for the navigation and swarming capabilities (their mental faculties) displayed by foraging insects. The last decade has seen significant progress in the application of principles extracted from invertebrates, as well as the application of biomimetic robots to model and better understand how animals function. This Perspectives paper on the past 10 years of the Living Machines conference outlines some of the most exciting recent advances in each of these fields before outlining lessons gleaned and the outlook for the next decade of invertebrate robotic research.

 
more » « less
Award ID(s):
2015317
NSF-PAR ID:
10403399
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
18
Issue:
3
ISSN:
1748-3182
Page Range / eLocation ID:
Article No. 035005
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This article is a historical perspective on how the study of the neuromechanics of insects and other arthropods has inspired the construction, and especially the control, of hexapod robots. Many hexapod robots’ control systems share common features, including: 1. Direction of motor output of each joint (i.e. to flex or extend) in the leg is gated by an oscillatory or bistable gating mechanism; 2. The relative phasing between each joint is influenced by proprioceptive feedback from the periphery (e.g. joint angles, leg load) or central connections between joint controllers; and 3. Behavior can be directed (e.g. transition from walking along a straight path to walking along a curve) via low-dimensional, broadly-acting descending inputs to the network. These distributed control schemes are inspired by, and in some robots, closely mimic the organization of the nervous systems of insects, the natural hexapods, as well as crustaceans. Nearly a century of research has revealed organizational principles such as central pattern generators, the role of proprioceptive feedback in control, and command neurons. These concepts have inspired the control systems of hexapod robots in the past, in which these structures were applied to robot controllers with neuromorphic (i.e. distributed) organization, but not neuromorphic computational units (i.e. neurons) or computational hardware (i.e. hardware-accelerated neurons). Presently, several hexapod robots are controlled with neuromorphic computational units with or without neuromorphic organization, almost always without neuromorphic hardware. In the near future, we expect to see hexapod robots whose controllers include neuromorphic organization, computational units, and hardware. Such robots may exhibit the full mobility of their insect counterparts thanks to a ‘biology-first’ approach to controller design. This perspective article is not a comprehensive review of the neuroscientific literature but is meant to give those with engineering backgrounds a gentle introduction into the neuroscientific principles that underlie models and inspire neuromorphic robot controllers. A historical summary of hexapod robots whose control systems and behaviors use neuromorphic elements is provided. Robots whose controllers closely model animals and may be used to generate concrete hypotheses for future animal experiments are of particular interest to the authors. The authors hope that by highlighting the decades of experimental research that has led to today’s accepted organization principles of arthropod nervous systems, engineers may better understand these systems and more fully apply biological details in their robots. To assist the interested reader, deeper reviews of particular topics from biology are suggested throughout.

     
    more » « less
  2. This article is a historical perspective on how the study of the neuromechanics of insects and other arthropods has inspired the construction, and especially the control, of hexapod robots. Many hexapod robots’ control systems share common features, including: 1. Direction of motor output of each joint (i.e. to flex or extend) in the leg is gated by an oscillatory or bistable gating mechanism; 2. The relative phasing between each joint is influenced by proprioceptive feedback from the periphery (e.g. joint angles, leg load) or central connections between joint controllers; and 3. Behavior can be directed (e.g. transition from walking along a straight path to walking along a curve) via low-dimensional, broadly-acting descending inputs to the network. These distributed control schemes are inspired by, and in some robots, closely mimic the organization of the nervous systems of insects, the natural hexapods, as well as crustaceans. Nearly a century of research has revealed organizational principles such as central pattern generators, the role of proprioceptive feedback in control, and command neurons. These concepts have inspired the control systems of hexapod robots in the past, in which these structures were applied to robot controllers with neuromorphic (i.e. distributed) organization, but not neuromorphic computational units (i.e. neurons) or computational hardware (i.e. hardware-accelerated neurons). Presently, several hexapod robots are controlled with neuromorphic computational units with or without neuromorphic organization, almost always without neuromorphic hardware. In the near future, we expect to see hexapod robots whose controllers include neuromorphic organization, computational units, and hardware. Such robots may exhibit the full mobility of their insect counterparts thanks to a ‘biology-first’ approach to controller design. This perspective article is not a comprehensive review of the neuroscientific literature but is meant to give those with engineering backgrounds a gentle introduction into the neuroscientific principles that underlie models and inspire neuromorphic robot controllers. A historical summary of hexapod robots whose control systems and behaviors use neuromorphic elements is provided. Robots whose controllers closely model animals and may be used to generate concrete hypotheses for future animal experiments are of particular interest to the authors. The authors hope that by highlighting the decades of experimental research that has led to today’s accepted organization principles of arthropod nervous systems, engineers may better understand these systems and more fully apply biological details in their robots. To assist the interested reader, deeper reviews of particular topics from biology are suggested throughout. 
    more » « less
  3. null (Ed.)
    Explainability has emerged as a critical AI research objective, but the breadth of proposed methods and application domains suggest that criteria for explanation vary greatly. In particular, what counts as a good explanation, and what kinds of explanation are computationally feasible, has become trickier in light of oqaque “black box” systems such as deep neural networks. Explanation in such cases has drifted from what many philosophers stipulated as having to involve deductive and causal principles to mere “interpretation,” which approximates what happened in the target system to varying degrees. However, such post hoc constructed rationalizations are highly problematic for social robots that operate interactively in spaces shared with humans. For in such social contexts, explanations of behavior, and, in particular, justifications for violations of expected behavior, should make reference to socially accepted principles and norms. In this article, we show how a social robot’s actions can face explanatory demands for how it came to act on its decision, what goals, tasks, or purposes its design had those actions pursue and what norms or social constraints the system recognizes in the course of its action. As a result, we argue that explanations for social robots will need to be accurate representations of the system’s operation along causal, purposive, and justificatory lines. These explanations will need to generate appropriate references to principles and norms—explanations based on mere “interpretability” will ultimately fail to connect the robot’s behaviors to its appropriate determinants. We then lay out the foundations for a cognitive robotic architecture for HRI, together with particular component algorithms, for generating explanations and engaging in justificatory dialogues with human interactants. Such explanations track the robot’s actual decision-making and behavior, which themselves are determined by normative principles the robot can describe and use for justifications. 
    more » « less
  4. Social robots are emerging as an important intervention for a variety of vulnerable populations. However, engaging participants in the design of social robots in a way that is ethical, meaningful, and rigorous can be challenging. Many current methods in human–robotic interaction rely on laboratory practices, often experimental, and many times involving deception which could erode trust in vulnerable populations. Therefore, in this paper, we share our human-centered design methodology informed by a participatory approach, drawing on three years of data from a project aimed to design and develop a social robot to improve the mental health of teens. We present three method cases from the project that describe creative and age appropriate methods to gather contextually valid data from a teen population. Specific techniques include design research, scenario and script writing, prototyping, and teens as operators and collaborative actors. In each case, we describe the method and its implementation and discuss the potential strengths and limitations. We conclude by situating these methods by presenting a set of recommended participatory research principles that may be appropriate for designing new technologies with vulnerable populations. 
    more » « less
  5. Evolution has honed predatory skills in the natural world where localizing and intercepting fast-moving prey is required. The current generation of robotic systems mimics these biological systems using deep learning. High-speed processing of the camera frames using convolutional neural networks (CNN) (frame pipeline) on such constrained aerial edge-robots gets resource-limited. Adding more compute resources also eventually limits the throughput at the frame rate of the camera as frame-only traditional systems fail to capture the detailed temporal dynamics of the environment. Bio-inspired event cameras and spiking neural networks (SNN) provide an asynchronous sensor-processor pair (event pipeline) capturing the continuous temporal details of the scene for high-speed but lag in terms of accuracy. In this work, we propose a target localization system combining event-camera and SNN-based high-speed target estimation and frame-based camera and CNN-driven reliable object detection by fusing complementary spatio-temporal prowess of event and frame pipelines. One of our main contributions involves the design of an SNN filter that borrows from the neural mechanism for ego-motion cancelation in houseflies. It fuses the vestibular sensors with the vision to cancel the activity corresponding to the predator's self-motion. We also integrate the neuro-inspired multi-pipeline processing with task-optimized multi-neuronal pathway structure in primates and insects. The system is validated to outperform CNN-only processing using prey-predator drone simulations in realistic 3D virtual environments. The system is then demonstrated in a real-world multi-drone set-up with emulated event data. Subsequently, we use recorded actual sensory data from multi-camera and inertial measurement unit (IMU) assembly to show desired working while tolerating the realistic noise in vision and IMU sensors. We analyze the design space to identify optimal parameters for spiking neurons, CNN models, and for checking their effect on the performance metrics of the fused system. Finally, we map the throughput controlling SNN and fusion network on edge-compatible Zynq-7000 FPGA to show a potential 264 outputs per second even at constrained resource availability. This work may open new research directions by coupling multiple sensing and processing modalities inspired by discoveries in neuroscience to break fundamental trade-offs in frame-based computer vision 1 . 
    more » « less