skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: Electrical and structural properties of binary Ga–Sb phase change memory alloys
Material properties of Ga–Sb binary alloy thin films deposited under ultra-high vacuum conditions were studied for analog phase change memory (PCM) applications. Crystallization of this alloy was shown to occur in the temperature range of 180–264 °C, with activation energy >2.5 eV depending on the composition. X-ray diffraction (XRD) studies showed phase separation upon crystallization into two phases, Ga-doped A7 antimony and cubic zinc-blende GaSb. Synchrotron in situ XRD analysis revealed that crystallization into the A7 phase is accompanied by Ga out-diffusion from the grains. X-ray absorption fine structure studies of the local structure of these alloys demonstrated a bond length decrease with a stable coordination number of 4 upon amorphous-to-crystalline phase transformation. Mushroom cell structures built with Ga–Sb alloys on ø110 nm TiN heater show a phase change material resistance switching behavior with resistance ratio >100 under electrical pulse measurements. TEM and Energy Dispersive Spectroscopy (EDS) studies of the Ga–Sb cells after ∼100 switching cycles revealed that partial SET or intermediate resistance states are attained by the variation of the grain size of the material as well as the Ga content in the A7 phase. A mechanism for a reversible composition control is proposed for analog cell performance. These results indicate that Te-free Ga–Sb binary alloys are potential candidates for analog PCM applications.  more » « less
Award ID(s):
1911592
PAR ID:
10403470
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
3
ISSN:
0021-8979
Page Range / eLocation ID:
035103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nonvolatile photonic integrated circuits employing phase change materials have relied either on optical switching mechanisms with precise multi-level control but poor scalability or electrical switching with seamless integration and scalability but mostly limited to a binary response. Recent works have demonstrated electrical multi-level switching; however, they relied on the stochastic nucleation process to achieve partial crystallization with low demonstrated repeatability and cyclability. Here, we re-engineer waveguide-integrated microheaters to achieve precise spatial control of the temperature profile (i.e., hotspot) and, thus, switch deterministic areas of an embedded phase change material cell. We experimentally demonstrate this concept using a variety of foundry-processed doped-silicon microheaters on a silicon-on-insulator platform to trigger multi-step amorphization and reversible switching of Sb2Se3and Ge2Sb2Se4Te alloys. We further characterize the response of our microheaters using Transient Thermoreflectance Imaging. Our approach combines the deterministic control resulting from a spatially resolved glassy-crystalline distribution with the scalability of electro-thermal switching devices, thus paving the way to reliable multi-level switching towards robust reprogrammable phase-change photonic devices for analog processing and computing. 
    more » « less
  2. null (Ed.)
    In this work, nine nanocrystalline binary Mg alloys were synthesized by high-energy ball milling. The compositions, Mg-5 wt% M (M-Cr, Ge, Mn, Mo, Ta, Ti, V, Y, and Zn), were milled with the objective of achieving non-equilibrium alloying. The milled alloys were consolidated via cold compaction (CC) at 25°C and spark plasma sintering (SPS) at 300°C. X-ray diffraction (XRD) analysis indicated grain refinement below 100 nm, and the scanning electron microscopy revealed homogeneous microstructures for all compositions. XRD analysis revealed that most of the alloys showed a change in the lattice parameter, which indicates the formation of a solid solution. A significant increase in the hardness compared to unmilled Mg was observed for all of the alloys. The corrosion behavior was improved in all of the binary alloys compared to milled Mg. A significant decrease in the cathodic kinetics was evident due to Ge and Zn additions. The influence of the alloying elements on corrosion behavior has been categorized and discussed based on the electrochemical response of their respective binary Mg alloys. 
    more » « less
  3. As new alloys are being developed for additive manufacturing (AM) applications, questions related to the temperature-dependent structural and compositional stability of these alloys remain. In this work, the benefits and limitations of a unique method for testing this stability are presented. This system employs the use of polychromatic synchrotron light to perform energy-dispersive x-ray diffraction (ED-XRD) on an electrostatically levitated sample at high temperatures. In comparison with a traditional angular-dispersive setup, the container-less electrostatic levitation method has unique advantages, including quicker acquisition times, simultaneous compositional information through fluorescence emissions, a reduction in background noise, and, importantly, concurrent/subsequent measurement of thermophysical properties. This combined method is ideal for phase transition studies by holding the levitated sample at a stable position and temperature through controlled heating and temperature management. To illustrate these capabilities, we show ED-XRD data of the well-known martensitic phase transition (hcp to bcc) in Ti–6Al–4V. In addition, results from the novel alloy Ni51Cu44Cr5 are presented. This alloy is shown to maintain an fcc structure upon heating. However, the concentration of Cu is reduced at high temperatures, resulting in a decrease in the lattice constant. As concurrent thermophysical properties are probed, these preliminary structure and composition experiments demonstrate the capabilities of this technique to determine the composition–processing–structure–properties of metal alloys for AM. 
    more » « less
  4. Abstract Non‐volatile phase‐change memory (PCM) devices are based on phase‐change materials such as Ge2Sb2Te(GST). PCM requires critically high crystallization growth velocity (CGV) for nanosecond switching speeds, which makes its material‐level kinetics investigation inaccessible for most characterization methods and remains ambiguous. In this work, nanocalorimetry enters this “no‐man's land” with scanning rate up to 1 000 000 K s−1(fastest heating rate among all reported calorimetric studies on GST) and smaller sample‐size (10–40 nm thick) typical of PCM devices. Viscosity of supercooled liquid GST (inferred from the crystallization kinetic) exhibits Arrhenius behavior up to 290 °C, indicating its low fragility nature and thus a fragile‐to‐strong crossover at ≈410 °C. Thin‐film GST crystallization is found to be a single‐step Arrhenius process dominated by growth of interfacial nuclei with activation energy of 2.36 ±  0.14 eV. Calculated CGV is consistent with that of actual PCM cells. This addresses a 10‐year‐debate originated from the unexpected non‐Arrhenius kinetics measured by commercialized chip‐based calorimetry, which reports CGV 103−105higher than those measured using PCM cells. Negligible thermal lag (<1.5 K) and no delamination is observed in this work. Melting, solidification, and specific heat of GST are also measured and agree with conventional calorimetry of bulk samples. 
    more » « less
  5. Surface segregation is a phenomenon common to all multicomponent materials and one that plays a critical role in determining their surface properties. Comprehensive studies of surface segregation versus bulk composition in ternary alloys have been prohibitive because of the need to study many different compositions. In this work, high-throughput low-energy He+ ionscattering spectra and energy-dispersive X-ray spectra were collected from a CuxAuyPd1−x−y composition spread alloy film under ultrahigh vacuum conditions. These have been used to quantify surface segregation across the entire CuxAuyPd1−x−y composition space (x = 0 → 1 and y = 0 → 1 − x). Surface compositions at 164 different bulk compositions were measured at 500 and 600 K. At both temperatures, Au shows the greatest tendency for segregation to the top-most surface while Pd is always depleted from the surface. Higher temperatures enhance the Au segregation. Segregation at most of the binary alloy bulk compositions matches with observations previously reported in the literature. However, surface compositions in the CuPd B2 composition region reveal segregation profiles that are nonmonotonic in bulk alloy composition. These were not observable in prior studies because of their limited resolution of composition space. An extended Langmuir−MacLean model, which describes ternary alloy segregation, has been used to analyze experimental data from the ternary alloys and to estimate pair-wise segregation free energies and segregation equilibrium constants. The ability to study surface segregation across the ternary alloy composition space with high-throughput methods has been validated, and the impact of bulk alloy phase on surface segregation is demonstrated and discussed. 
    more » « less