skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Marine shellfish exploitation as a means of reducing vulnerability to resource uncertainty in southern coastal Peru (200 BCE–150 CE)
The effects of El Niño Southern Oscillation (ENSO) are notoriously hazardous for human populations of the hyperarid Peruvian coast. Yet, ENSO climate fluctuations are fundamental to the ecology of desert plant and animal resources that have been incorporated into human subsistence economies for millennia. We examine marine shellfish exploitation among early complex societies in southern coastal Peru at the end of the first millenium BCE to better understand the subsistence vulnerability of communities in arid environments with variable resource availability and productivity. We analyze new shellfish data from Jahuay, a shoreline fishing settlement in the Topará Quebrada occupied amidst new regional social hierarchies and intensifying inner-valley agriculture. We compare mollusk taxonomic diversity and taxa rank order with published assemblages from four near-contemporaneous sites to assess local and regional trends in resource exploitation. At Jahuay, a unique focus on foraging plentiful Donax obesulus clams resistant to ENSO effects may reflect a local buffering strategy to ensure a resource supply through interannual and decadal climate oscillations. Our comparative results suggest regional reliance on intertidal resource patches, especially rocky habitats, for consumable shellfish. The relative convenience of gathering sessile intertidal taxa that form dense settlements may partly explain their regional popularity. The potential to dry and exchange mollusk meat as a protein source likely enhanced diet diversification while supporting economic and social relationships between communities. Overall, our findings imply that mollusks and intertidal foraging landscapes were important within a broad-spectrum subsistence strategy suited to maintaining and coordinating food availability in a dynamic environment.  more » « less
Award ID(s):
2027298
PAR ID:
10403496
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Holocene
Volume:
32
Issue:
12
ISSN:
0959-6836
Page Range / eLocation ID:
1503 to 1517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paiva, Vitor_Hugo Rodrigues (Ed.)
    A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013–2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006–2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star,Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely. 
    more » « less
  2. ABSTRACT AimSurveying the demography of populations near species range edges may indicate their vulnerability to range contractions or local extinction as the climate changes. In the rocky intertidal, not only are latitudinal ranges constricted by thermal stress, but tides also create zonation or a ‘vertical range’ driven by sharp environmental gradients. By investigating demographics along the latitudinal and vertical ranges simultaneously, we can investigate whether populations may be vulnerable to a changing climate. LocationRocky intertidal habitats along west coast of the United States. TaxaOchre sea starPisaster ochraceus, six‐armed sea starLeptasteriasspp., emarginate whelks(Nucella ostrina and N. emarginata) and channeled whelkN. canaliculata. MethodsIn 2018, we surveyed the demographics of the taxa above at 33 sites spanning > 11° latitude from central Oregon to southern California, near the southern range limits of each taxon. We counted and sized individuals from the high to low intertidal zone. To understand how environmental stress changed with latitude, we evaluated intertidal temperaturesin situ, as well as tidal extremes, tidal amplitude and wave exposure using offshore buoys. ResultsFor all taxa, population density, the relative proportion of smaller individuals (except for emarginate whelks) and the upper vertical limits on the shore declined from north to south as temperatures increased and high tide height, tidal amplitude and wave heights decreased. In addition, smaller individualLeptasteriasspp. generally inhabited lower shore levels while smaller individual emarginate whelks inhabited higher shore levels coastwide. ForN. canaliculata, smaller animals were higher on shore northward, but lower on shore southward. Main ConclusionsWhile this study is a snapshot in time and cannot assess impacts of climate change, our surveys suggest environmentally‐related demographic limitation toward southern range limits and demographically vulnerable southern populations. Therefore, a warming climate may cause local extinctions or range contractions near southern limits. 
    more » « less
  3. null (Ed.)
    Characterizing energy flow and trophic linkages is fundamental to understanding the functioning and resilience of Arctic ecosystems under increasing pressure from climate change and anthropogenic exploitation. We used carbon and nitrogen stable isotopes to examine trophic dynamics and the relative contribution of terrestrial organic matter, water column phytoplankton, and phytobenthos (benthic micro- and macro-autotrophs as well as sea ice algae) to the food webs supporting 45 macroconsumers in three Arctic coastal lagoon ecosystems (Krusenstern, Sisualik, Akulaaq) and the adjacent Kotzebue Sound with varying degrees of connectivity in Cape Krusenstern National Monument, Alaska. A two-source (water column particulate organic matter and benthic sediment organic matter), two-isotope trophic dynamics model informed by a Bayesian isotope mixing model revealed that the Lagoon-Kotzebue Sound coastal ecosystem supported consumers along a trophic position continuum from primary consumers, including amphipods, copepods, and clams to trophic level five predators, such as seastars, piscivorous fishes, seals, and seabirds. The relative contribution of the three primary producer end members, terrestrial organic matter (41 ± 21%), phytoplankton (25 ± 21%), and phytobenthos (34 ± 23%) varied as a function of: 1) consumer foraging ecology and 2) consumer location. Suspension feeders received most of their carbon from food webs based on phytoplankton (49 ± 11%) and terrestrial organic matter (23 ± 5%), whereas herbivores and detritivores received the majority of their carbon from phytobenthos-based food webs, 58 ± 10% and 60 ± 8%, respectively. Omnivores and predators showed more even distributions of resource reliance and greater overall variance among species. Within the invertebrates, the importance of terrestrial organic matter decreased and phytobenthos increased with increasing trophic position. The importance of terrestrial organic matter contribution increased with lagoon proximity to major rivers inputs and isolation from Kotzebue Sound. Several taxa with cultural and subsistence food importance to local communities showed significant reliance (30–90% of baseline carbon) on food chains linked to fresh terrestrial organic matter. Our study indicates that terrestrial-marine linkages are important to the function of Arctic coastal lagoon ecosystems and artisanal fisheries. These linkages are likely to strengthen in the future with regional changes in erosion and runoff associated with climate change and anthropogenic disturbance. 
    more » « less
  4. ABSTRACT Rural shellfish harvesters, including many Alaska Native peoples, require safe access to wild shellfish for subsistence, food security, and cultural practices. However, wild shellfish may be contaminated with paralytic shellfish toxins, leaving harvesters with increased risks of significant illness or death. To manage these risks, the Sitka Tribe of Alaska Environmental Research Lab (STAERL) was established to test shellfish samples sent in by harvesters in the community and to support regular monitoring of select local beaches by tribal governments. Here, we investigated harvester utilization of this shellfish testing service from 2016-2024, comprising 299 samples sent in by local harvesters, and used generalized linear models to examine how annual testing rates varied by year, location, species, and species-based detoxification rates. We pay particular attention to differences that may reflect the influence of risk perceptions and accessibility of harvesting and testing on utilization (DOI: 10.5061/dryad.dfn2z35dr). We find that testing utilization has increased through time (1.278, 95% CI: 1.161, 1.407), testing rates are highest in spring and broadly similar between the other three seasons, testing rates in Sitka are much higher than those outside of it, and neither road accessibility nor species-based detoxification rates strongly affect testing rate ratios. These findings suggest that shellfish testing behavior is consistent despite seasonal variations in risk and convenience, but that the STAERL individual testing program provides a pathway to maintain established subsistence harvest practices while reducing poisoning risks. 
    more » « less
  5. Abstract The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large‐scale, long‐term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long‐term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long‐term (2006–2016) change and a recent marine heatwave (2014–2016) associated with two atmospheric and oceanographic anomalies, the “Blob” and extreme El Niño Southern Oscillation (ENSO). Canopy‐forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region‐wide changes in productive coastal marine ecosystems in response to large‐scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future. 
    more » « less