skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fresh Start: Encouraging Politeness in Wakeword-Driven Human-Robot Interaction
Deployed social robots are increasingly relying on wakeword-based interaction, where interactions are human-initiated by a wakeword like “Hey Jibo”. While wakewords help to increase speech recognition accuracy and ensure privacy, there is concern that wakeword-driven interaction could encourage impolite behavior because wakeword-driven speech is typically phrased as commands. To address these concerns, companies have sought to use wake- word design to encourage interactant politeness, through wakewords like “⟨Name⟩, please”. But while this solution is intended to encourage people to use more “polite words”, researchers have found that these wakeword designs actually decrease interactant politeness in text-based communication, and that other wakeword designs could better encourage politeness by priming users to use Indirect Speech Acts. Yet there has been no previous research to directly compare these wakewords designs in in-person, voice-based human-robot interaction experiments, and previous in-person HRI studies could not effectively study carryover of wakeword-driven politeness and impoliteness into human-human interactions. In this work, we conceptually reproduced these previous studies (n=69) to assess how the wakewords “Hey ⟨Name⟩”, “Excuse me ⟨Name⟩”, and “⟨Name⟩, please” impact robot-directed and human-directed politeness. Our results demonstrate the ways that different types of linguistic priming interact in nuanced ways to induce different types of robot-directed and human-directed politeness.  more » « less
Award ID(s):
1909847 1849348
PAR ID:
10403579
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM/IEEE International Conference on Human-Robot Interaction
Page Range / eLocation ID:
112 to 121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For enhanced performance and privacy, companies deploying voice-activated technologies such as virtual assistants and robots are increasingly tending toward designs in which technologies only begin attending to speech once a specified wakeword is heard. Due to concerns that interactions with such technologies could lead users, especially children, to develop impolite habits, some companies have begun to develop use modes in which interactants are required to use ostensibly polite wakewords such as " Please''. In this paper, we argue that these ``please-centering'' wakewords are likely to backfire and actually discourage polite interactions due to the particular types of lexical and syntactic priming induced by those wakewords. We then present the results of a human-subject experiment (n=90) that validates those claims. 
    more » « less
  2. While the ultimate goal of natural-language based Human-Robot Interaction (HRI) may be free-form, mixed-initiative dialogue,social robots deployed in the near future will likely primarily engage in wakeword-driven interaction, in which users’ commands are prefaced by a wakeword such as “Hey, Robot.” This style of interaction helps to allay user privacy concerns, as the robot’s full speech recognition module need not be employed until the target wakeword is used. Unfortunately, there are a number of concerns in the popular media surrounding this style of interaction, with consumers fearing that it is training users (in particular,children) to be rude towards technology, and by extension, rude towards other humans. In this paper, we present a study that demonstrates how an alternate style of wakeword, i.e., “Excuse me, Robot” may allay this concern, by priming users to phrase commands as Indirect Speech Acts 
    more » « less
  3. For robots to successfully operate as members of human-robot teams, it is crucial for robots to correctly understand the intentions of their human teammates. This task is particularly difficult due to human sociocultural norms: for reasons of social courtesy (e.g., politeness), people rarely express their intentions directly, instead typically employing polite utterance forms such as Indirect Speech Acts (ISAs). It is thus critical for robots to be capable of inferring the intentions behind their teammates’ utterances based on both their interaction context (including, e.g., social roles) and their knowledge of the sociocultural norms that are applicable within that context. This work builds off of previous research on understanding and generation of ISAs using Dempster-Shafer Theoretic Uncertain Logic, by showing how other recent work in Dempster-Shafer Theoretic rule learning can be used to learn appropriate uncertainty intervals for robots’ representations of sociocultural politeness norms. 
    more » « less
  4. Robots, particularly in service and companionship roles, must develop positive relationships with people they interact with regularly to be successful. These positive human-robot relationships can be characterized as establishing “rapport,” which indicates mutual understanding and interpersonal connection that form the groundwork for successful long-term human-robot interaction. However, the human-robot interaction research literature lacks scale instruments to assess human-robot rapport in a variety of situations. In this work, we developed the 18-item Connection-Coordination Rapport (CCR) Scale to measure human-robot rapport. We first ran Study 1 (N = 288) where online participants rated videos of human-robot interactions using a set of candidate items. Our Study 1 results showed the discovery of two factors in our scale, which we named “Connection” and “Coordination.” We then evaluated this scale by running Study 2 (N = 201) where online participants rated a new set of human-robot interaction videos with our scale and an existing rapport scale from virtual agents research for comparison. We also validated our scale by replicating a prior in-person human-robot interaction study, Study 3 (N = 44), and found that rapport is rated significantly greater when participants interacted with a responsive robot (responsive condition) as opposed to an unresponsive robot (unresponsive condition). Results from these studies demonstrate high reliability and validity for the CCR scale, which can be used to measure rapport in both first-person and third-person perspectives. We encourage the adoption of this scale in future studies to measure rapport in a variety of human-robot interactions. 
    more » « less
  5. null (Ed.)
    This work has developed an iteratively refined understanding of participants’ natural perceptions and responses to unmanned aerial vehicle (UAV) flight paths, or gestures. This includes both what they believe the UAV is trying to communicate to them, in addition to how they expect to respond through physical action. Previous work in this area has focused on eliciting gestures from participants to communicate specific states, or leveraging gestures that are observed in the world rather than on understanding what the participants believe is being communicated and how they would respond. This work investigates previous gestures either created or categorized by participants to understand the perceived content of their communication or expected response, through categories created by participant free responses and confirmed through forced choice testing. The human-robot interaction community can leverage this work to better understand how people perceive UAV flight paths, inform future designs for non-anthropomorphic robot communications, and apply lessons learned to elicit informative labels from people who may or may not be operating the vehicle. We found that the Negative Attitudes towards Robots Scale (NARS) can be a good indicator of how we can expect a person to react to a robot. Recommendations are also provided to use motion approaching/retreating from a person to encourage following, perpendicular to their field of view for blocking, and to use either no motion or large altitude changes to encourage viewing. 
    more » « less