skip to main content


Search for: All records

Award ID contains: 1849348

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sampling-based motion planning works well in many cases but is less effective if the configuration space has narrow passages. In this paper, we propose a learning-based strategy to sample in these narrow passages, which improves overall planning time. Our algorithm first learns from the configuration space planning graphs and then uses the learned information to effectively generate narrow passage samples. We perform experiments in various 6D and 7D scenes. The algorithm offers one order of magnitude speed-up compared to baseline planners in some of these scenes. 
    more » « less
    Free, publicly-accessible full text available May 29, 2024
  2. Deployed social robots are increasingly relying on wakeword-based interaction, where interactions are human-initiated by a wakeword like “Hey Jibo”. While wakewords help to increase speech recognition accuracy and ensure privacy, there is concern that wakeword-driven interaction could encourage impolite behavior because wakeword-driven speech is typically phrased as commands. To address these concerns, companies have sought to use wake- word design to encourage interactant politeness, through wakewords like “⟨Name⟩, please”. But while this solution is intended to encourage people to use more “polite words”, researchers have found that these wakeword designs actually decrease interactant politeness in text-based communication, and that other wakeword designs could better encourage politeness by priming users to use Indirect Speech Acts. Yet there has been no previous research to directly compare these wakewords designs in in-person, voice-based human-robot interaction experiments, and previous in-person HRI studies could not effectively study carryover of wakeword-driven politeness and impoliteness into human-human interactions. In this work, we conceptually reproduced these previous studies (n=69) to assess how the wakewords “Hey ⟨Name⟩”, “Excuse me ⟨Name⟩”, and “⟨Name⟩, please” impact robot-directed and human-directed politeness. Our results demonstrate the ways that different types of linguistic priming interact in nuanced ways to induce different types of robot-directed and human-directed politeness. 
    more » « less
  3. We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-motion planning. We apply data generated during multi-directional sampling-based planning (such as PRM) to a machine learning approach to construct an infeasibility proof. An infeasibility proof is a closed manifold in the obstacle region of the configuration space that separates the start and goal into disconnected components of the free configuration space. We train the manifold using common machine learning techniques and then triangulate the manifold into a polytope to prove containment in the obstacle region. Under assumptions about the hyper-parameters and robustness of configuration space optimization, the output is either an infeasibility proof or a motion plan in the limit. We demonstrate proof construction for up to 4-DOF configuration spaces. A large part of the algorithm is parallelizable, which offers potential to address higher dimensional configuration spaces.

     
    more » « less
  4. Proving motion planning infeasibility is an important part of a complete motion planner. Common approaches for high-dimensional motion planning are only probabilistically complete. Previously, we presented an algorithm to construct infeasibility proofs by applying machine learning to sampled configurations from a bidirectional sampling-based planner. In this work, we prove that the learned manifold converges to an infeasibility proof exponentially. Combining prior approaches for sampling-based planning and our converging infeasibility proofs, we propose the term asymptotic completeness to describe the property of returning a plan or infeasibility proof in the limit. We compare the empirical convergence of different sampling strategies to validate our analysis. 
    more » « less
  5. In this paper, we explore how robots can properly explain failures during navigation tasks with privacy concerns. We present an integrated robotics approach to generate visual failure explanations, by combining a language-capable cognitive architecture (for recognizing intent behind commands), an object- and location-based context recognition system (for identifying the locations of people and classifying the context in which those people are situated) and an infeasibility proof-based motion planner (for explaining planning failures on the basis of contextually mediated privacy concerns). The behavior of this integrated system is validated using a series of experiments in a simulated medical environment. 
    more » « less
  6. For enhanced performance and privacy, companies deploying voice-activated technologies such as virtual assistants and robots are increasingly tending toward designs in which technologies only begin attending to speech once a specified wakeword is heard. Due to concerns that interactions with such technologies could lead users, especially children, to develop impolite habits, some companies have begun to develop use modes in which interactants are required to use ostensibly polite wakewords such as " Please''. In this paper, we argue that these ``please-centering'' wakewords are likely to backfire and actually discourage polite interactions due to the particular types of lexical and syntactic priming induced by those wakewords. We then present the results of a human-subject experiment (n=90) that validates those claims. 
    more » « less
  7. Shell, Dylan A ; Toussaint, Marc (Ed.)
    We present a learning-based approach to prove infeasibility of kinematic motion planning problems. Sampling-based motion planners are effective in high-dimensional spaces but are only probabilistically complete. Consequently, these planners cannot provide a definite answer if no plan exists, which is important for high-level scenarios, such as task-motion planning. We propose a combination of bidirectional sampling-based planning (such as RRT-connect) and machine learning to construct an infeasibility proof alongside the two search trees. An infeasibility proof is a closed manifold in the obstacle region of the configuration space that separates the start and goal into disconnected components of the free configuration space. We train the manifold using common machine learning techniques and then triangulate the manifold into a polytope to prove containment in the obstacle region. Under assumptions about learning hyper-parameters and robustness of configuration space optimization, the output is either an infeasibility proof or a motion plan. We demonstrate proof construction for 3-DOF and 4-DOF manipulators and show improvement over a previous algorithm. 
    more » « less
  8. null (Ed.)