Environmental regulatory agencies have implemented stringent restrictions on the permissible levels of sulfur compounds in fuel to reduce harmful emissions and improve air quality. Problematically, traditional desulfurization methods have shown low effectiveness in the removal of refractory sulfur compounds, e.g., thiophene (TS), dibenzothiophene (DBT), and 4-methyldibenzothiophene (MDBT). In this work, molecular dynamics (MD) simulations and free energy perturbation (FEP) have been applied to investigate the use of ionic liquids (ILs) and deep eutectic solvents (DESs) as efficient TS/DBT/MDBT extractants. For the IL simulations, the selected cation was 1-butyl-3-methylimidazolium [BMIM], and the anions included chloride [Cl], thiocyanate [SCN], tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethylsulfonyl)amide [NTf2]. The DESs were composed of choline chloride with ethylene glycol (CCEtg) or with glycerol (CCGly). Calculation of excess chemical potentials predicted the ILs to be more promising extractants with energies lower by 1-3 kcal/mol compared to DESs. Increasing IL anion size was positively correlated to enhanced solvation of S-compounds, which was influenced by energetically dominant solute-anion interactions and favorable solute-[BMIM] pi-pi stacking. For the DESs, the solvent components offered a range of synergistic, yet comparatively weaker electrostatic interactions that included hydrogen bonding and cation-pi interactions. An in-depth analysis of the structure of IL and DES systems is presented, along with a discussion of the critical factors behind experimental trends of S-compound extraction efficiency.
more »
« less
Deep neural network based quantum simulations and quasichemical theory for accurate modeling of molten salt thermodynamics
With dual goals of efficient and accurate modeling of solvation thermodynamics in molten salt liquids, we employ ab initio molecular dynamics (AIMD) simulations, deep neural network interatomic potentials (NNIP), and quasichemical theory (QCT) to calculate the excess chemical potentials for the solute ions Na + and Cl − in the molten NaCl liquid. NNIP-based molecular dynamics simulations accelerate the calculations by 3 orders of magnitude and reduce the uncertainty to 1 kcal mol −1 . Using the Density Functional Theory (DFT) level of theory, the predicted excess chemical potential for the solute ion pair is −178.5 ± 1.1 kcal mol −1 . A quantum correction of 13.7 ± 1.9 kcal mol −1 is estimated via higher-level quantum chemistry calculations, leading to a final predicted ion pair excess chemical potential of −164.8 ± 2.2 kcal mol −1 . The result is in good agreement with a value of −163.5 kcal mol −1 obtained from thermo-chemical tables. This study validates the application of QCT and NNIP simulations to the molten salt liquids, allowing for significant insights into the solvation thermodynamics crucial for numerous molten salt applications.
more »
« less
- Award ID(s):
- 1955161
- PAR ID:
- 10403725
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 13
- Issue:
- 28
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 8265 to 8273
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-level quantum chemical computations have provided significant insight into the fundamental physical nature of non-covalent interactions. These studies have focused primarily on gas-phase computations of small van der Waals dimers; however, these interactions frequently take place in complex chemical environments, such as proteins, solutions, or solids. To better understand how the chemical environment affects non-covalent interactions, we have undertaken a quantum chemical study of π– π interactions in an aqueous solution, as exemplified by T-shaped benzene dimers surrounded by 28 or 50 explicit water molecules. We report interaction energies (IEs) using second-order Møller–Plesset perturbation theory, and we apply the intramolecular and functional-group partitioning extensions of symmetry-adapted perturbation theory (ISAPT and F-SAPT, respectively) to analyze how the solvent molecules tune the π– π interactions of the solute. For complexes containing neutral monomers, even 50 explicit waters (constituting a first and partial second solvation shell) change total SAPT IEs between the two solute molecules by only tenths of a kcal mol −1 , while significant changes of up to 3 kcal mol −1 of the electrostatic component are seen for the cationic pyridinium–benzene dimer. This difference between charged and neutral solutes is attributed to large non-additive three-body interactions within solvated ion-containing complexes. Overall, except for charged solutes, our quantum computations indicate that nearby solvent molecules cause very little “tuning” of the direct solute–solute interactions. This indicates that differences in binding energies between the gas phase and solution phase are primarily indirect effects of the competition between solute–solute and solute–solvent interactions.more » « less
-
Classical molecular dynamics simulations of the hydration thermodynamics, structure, and dynamics of water in hydration shells of charged buckminsterfullerenes are presented in this study. Charging of fullerenes leads to a structural transition in the hydration shell, accompanied by creation of a significant population of dangling O–H bonds pointing toward the solute. In contrast to the well accepted structure–function paradigm, this interfacial structural transition causes nearly no effect on either the dynamics of hydration water or on the solvation thermodynamics. Linear response to the solute charge is maintained despite significant structural changes in the hydration shell, and solvation thermodynamic potentials are nearly insensitive to the altering structure. Only solvation heat capacities, which are higher thermodynamic derivatives of the solvation free energy, indicate some sensitivity to the local hydration structure. We have separated the solvation thermodynamic potentials into direct solute–solvent interactions and restructuring of the hydration shell and analyzed the relative contributions of electrostatic and nonpolar interactions to the solvation thermodynamics.more » « less
-
Neural Network potentials are developed which accurately make and break bonds for use in molecular simulations. We report a neural network potential that can describe the potential energy surface for carbon–carbon bond dissociation with less than 1 kcal mol−1 error compared to complete active space second-order perturbation theory (CASPT2), and maintains this accuracy for both the minimum energy path and molecular dynamic calculations up to 2000 K. We utilize a transfer learning algorithm to develop neural network potentials to generate potential energy surfaces; this method aims to use the minimum amount of CASPT2 data on small systems to train neural network potentials while maintaining excellent transferability to larger systems. First, we generate homolytic carbon–carbon bond dissociation data of small size alkanes with density functional theory (DFT) energies to train the potentials to accurately predict bond dissociation at the DFT level. Then, using transfer learning, we retrained the neural network potential to the CASPT2 level of accuracy. We demonstrate that the neural network potential only requires bond dissociation data of a few small alkanes to accurately predict bond dissociation energy in larger alkanes. We then perform additional training on molecular dynamic simulations to refine our neural network potentials to obtain high accuracy for general use in molecular simulation. This training algorithm is generally applicable to any type of bond or any level of theory and will be useful for the generation of new reactive neural network potentials.more » « less
-
Understanding the solvation structure of electrolytes is crucial for optimizing the performance and stability of lithium-ion batteries. Novel electrolytes are essential for enhancing electrolyte structure and ensuring better integration with modern electrode systems. Herein, we report a novel weakly solvated ether electrolyte (WSEE) composed of a pure fluorinated ether solvent, which results in an anion-rich solvation structure even at a low salt concentration of 1 M. To explore this, we selected the advanced fluorinated solvent 2,2-difluoroethyl methyl ether (FEME) and compared it with dipropyl ether (DPE), ethylene carbonate (EC), and diethyl carbonate (DEC). The prepared electrolyte systems include DPE with 1 M, 1.8 M, and 4 M LiFSI; FEME with 1 M, 1.8 M, and 4 M LiFSI; and a 1[thin space (1/6-em)]:[thin space (1/6-em)]1 vol% EC/DEC mixture containing 1 M LiPF6. In this work, we comprehensively investigate the Li+ solvation structures using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Our computational findings indicate the presence of large ion aggregates (AGGs) in each DPE- and FEME-based electrolyte, while SSIPs (68%) are the dominant species in the mixed EC/DEC electrolyte. Notably, the formation of large ion aggregates is more pronounced in FEME-based electrolytes. The dominant solvation structures in the ether-based electrolytes are the anion-rich complexes Li+(FSI−)3(DPE)1 and Li+(FSI−)3(FEME)1. We find that, similar to DPE, the FEME solvent also exhibits weak solvating power across all examined salt concentrations. More specifically, we find that FEME has weaker solvating power than DPE. This behavior is predicted by MD simulations, which indicate a strong preference for Li+ ions to coordinate with FSI− anions within the primary solvation shell. We also observe that the number of unique solvation structures in the ether-based electrolytes increases with salt concentration, with FEME + LiFSI showing slightly more unique solvation structures than DPE + LiFSI. Furthermore, the quantum mechanical features of the Li+ solvation structures in DPE + 1.8 M LiFSI, FEME + 1.8 M LiFSI, and EC/DEC + 1 M LiPF6 electrolytes are analyzed in detail using DFT calculations. We anticipate that this study will provide valuable insights into the Li+ solvation structures in DPE, FEME, and EC/DEC electrolytes, where the ether-based electrolytes exhibit closely similar properties.more » « less
An official website of the United States government

