skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Computational study of Li + solvation structures in fluorinated ether, non-fluorinated ether, and organic carbonate-based electrolytes at low and high salt concentrations
Understanding the solvation structure of electrolytes is crucial for optimizing the performance and stability of lithium-ion batteries. Novel electrolytes are essential for enhancing electrolyte structure and ensuring better integration with modern electrode systems. Herein, we report a novel weakly solvated ether electrolyte (WSEE) composed of a pure fluorinated ether solvent, which results in an anion-rich solvation structure even at a low salt concentration of 1 M. To explore this, we selected the advanced fluorinated solvent 2,2-difluoroethyl methyl ether (FEME) and compared it with dipropyl ether (DPE), ethylene carbonate (EC), and diethyl carbonate (DEC). The prepared electrolyte systems include DPE with 1 M, 1.8 M, and 4 M LiFSI; FEME with 1 M, 1.8 M, and 4 M LiFSI; and a 1[thin space (1/6-em)]:[thin space (1/6-em)]1 vol% EC/DEC mixture containing 1 M LiPF6. In this work, we comprehensively investigate the Li+ solvation structures using molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Our computational findings indicate the presence of large ion aggregates (AGGs) in each DPE- and FEME-based electrolyte, while SSIPs (68%) are the dominant species in the mixed EC/DEC electrolyte. Notably, the formation of large ion aggregates is more pronounced in FEME-based electrolytes. The dominant solvation structures in the ether-based electrolytes are the anion-rich complexes Li+(FSI−)3(DPE)1 and Li+(FSI−)3(FEME)1. We find that, similar to DPE, the FEME solvent also exhibits weak solvating power across all examined salt concentrations. More specifically, we find that FEME has weaker solvating power than DPE. This behavior is predicted by MD simulations, which indicate a strong preference for Li+ ions to coordinate with FSI− anions within the primary solvation shell. We also observe that the number of unique solvation structures in the ether-based electrolytes increases with salt concentration, with FEME + LiFSI showing slightly more unique solvation structures than DPE + LiFSI. Furthermore, the quantum mechanical features of the Li+ solvation structures in DPE + 1.8 M LiFSI, FEME + 1.8 M LiFSI, and EC/DEC + 1 M LiPF6 electrolytes are analyzed in detail using DFT calculations. We anticipate that this study will provide valuable insights into the Li+ solvation structures in DPE, FEME, and EC/DEC electrolytes, where the ether-based electrolytes exhibit closely similar properties.  more » « less
Award ID(s):
2237990
PAR ID:
10625646
Author(s) / Creator(s):
;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Energy Advances
ISSN:
2753-1457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The application of Li‐metal‐anodes (LMA) can significantly improve the energy density of state‐of‐the‐art lithium ion batteries. Lots of new electrolyte systems have been developed to form a stable solid electrolyte interphase (SEI) films, thereby achieving long‐term cycle stability of LMA. Unfortunately, the common problem faced by these electrolytes is poor oxidation stability, which rarely supports the cycling of high‐voltage Li‐metal batteries (LMBs). In this work, a new single‐component solvent dimethoxy(methyl)(3,3,3‐trifluoropropyl) silane is proposed. The electrolyte composed of this solvent and 3 mLiFSI salt successfully supports the long‐term cycle stability of limited‐Li (50 µm)||high loading LiCoO2(≈20 mg cm−2) cell at 4.6 V. Experiments and theoretical research results show that the outstanding performance of the electrolyte in high‐voltage LMBs is mainly attributed to its unique solvation structures and its great ability to build a highly stable and robust interphase on the surface of LMA and high‐voltage cathodes. Interestingly, this proposed electrolyte system builds a stable SEI film rich in LiF and Li3N on the surface of LMA by improving the two‐electron reduction activity of FSIwithout adding LiNO3, the well‐known additive used for LMBs. The design idea of the proposed electrolyte can guide the development of high‐voltage LMBs. 
    more » « less
  2. Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window. 
    more » « less
  3. Abstract Lithium‐ion batteries (LIBs) are increasingly encouraged to enhance their environmental friendliness and safety while maintaining optimal energy density and cost‐effectiveness. Although various electrolytes using greener and safer glyme solvents have been reported, the low charge voltage (usually lower than 4.0 V vs Li/Li+) restricts the energy density of LIBs. Herein, tetraglyme, a less‐toxic, non‐volatile, and non‐flammable ether solvent, is exploited to build safer and greener LIBs. It is demonstrated that ether electrolytes, at a standard salt concentration (1 m), can be reversibly cycled to 4.5 V vs Li/Li+. Anchored with Boron‐rich cathode‐electrolyte interphase (CEI) and mitigated current collector corrosion, the LiNi0.8Mn0.1Co0.1O2(NMC811) cathode delivers competitive cyclability versus commercial carbonate electrolytes when charged to 4.5 V. Synchrotron spectroscopic and imaging analyses show that the tetraglyme electrolyte can sufficiently suppress the overcharge behavior associated with the high‐voltage electrolyte decomposition, which is advantageous over previously reported glyme electrolytes. The new electrolyte also enables minimal transition metal dissolution and deposition. NMC811||hard carbon full cell delivers excellent cycling stability at C/3 with a high average Coulombic efficiency of 99.77%. This work reports an oxidation‐resilient tetraglyme electrolyte with record‐high 4.5 V stability and enlightens further applications of glyme solvents for sustainable LIBs by designing Boron‐rich interphases. 
    more » « less
  4. null (Ed.)
    To improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF6 in EC-DEC) in a microporous polymer network, the cation transference number increases to 0.79 while maintaining an ionic conductivity on the order of 10−3 S cm−1. By comparison, a non-porous, condensed polymer electrolyte of the same chemistry has a lower transference number and conductivity, of 0.65 and 7.6 × 10−4 S cm−1, respectively. Within Li-metal/LiFePO4 cells, the improved transport properties of the porous polymer electrolyte enable substantial performance enhancements compared to a commercial separator in terms of rate capability, capacity retention, active material utilization, and efficiency. These results highlight the importance of polymer electrolyte structure–performance property relationships and help guide the future engineering of better materials. 
    more » « less
  5. Lithium metal batteries (LMBs), especially “anode-free“ LMBs, promise much higher energy density than current lithium-ion batteries but suffer from poor capacity retention. While novel electrolytes have been designed to extend cycle life in anode free LMBs, most of them contain a high fraction of fluorinated solvents or diluents that may cause environmental concerns. Herein, we report the design and synthesis of a group of nonfluorinated ether solvents (termed xME solvents). By substituting the methyl terminal group of 1,2-dimethoxy ethane (DME) with different alkyl groups, the solvation power of xME solvents was tuned to be weaker, leading to more ion pairing in electrolyte solvation structure. In anode free type Cu/LiFePO4(Cu/LFP) cells, xME electrolytes in general show better capacity retention than DME-based electrolyte. Some xME electrolytes also show better oxidative stability than DME against aluminum and LiNi0.8Mn0.1Co0.1O2(NMC811) electrodes. While the general improvement in LMB cycle life and oxidative stability can be attributed to more ion pairing, the local variation within xME electrolytes indicates other factors are also important. Our work proposes a molecular design strategy to fine-tune ion solvation structure of nonfluorinated ether electrolytes for LMBs. 
    more » « less