skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Thick and old sea ice in the Beaufort Sea during summer 2020/21 was associated with enhanced transport
Abstract The Arctic Ocean has seen a remarkable reduction in sea ice coverage, thickness and age since the 1980s. These changes are most pronounced in the Beaufort Sea, with a transition around 2007 from a regime dominated by multi-year sea ice to one with large expanses of open water during the summer. Using satellite-based observations of sea ice, an atmospheric reanalysis and a coupled ice-ocean model, we show that during the summers of 2020 and 2021, the Beaufort Sea hosted anomalously large concentrations of thick and old ice. We show that ice advection contributed to these anomalies, with 2020 dominated by eastward transport from the Chukchi Sea, and 2021 dominated by transport from the Last Ice Area to the north of Canada and Greenland. Since 2007, cool season (fall, winter, and spring) ice volume transport into the Beaufort Sea accounts for ~45% of the variability in early summer ice volume—a threefold increase from that associated with conditions prior to 2007. This variability is likely to impact marine infrastructure and ecosystems.  more » « less
Award ID(s):
1751363 1744587
NSF-PAR ID:
10403817
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
3
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km 3 month -1 yr -1 on average over 2002-2019 derived from satellite observations. 
    more » « less
  2. Abstract

    In recent decades, the Arctic minimum sea ice extent has transitioned from a predominantly thick multiyear ice cover to a thinner seasonal ice cover. We partition the total (observed) Arctic summer area loss into thermodynamic and dynamic (convergence, ridging, and export) sea ice area loss during the satellite era from 1979 to 2021 using a Lagrangian sea ice tracking model driven by satellite-derived sea ice velocities. Results show that the thermodynamic signal dominates the total summer ice area loss and the dynamic signal remains small (∼20%) even in 2007 when dynamic loss was largest. Sea ice loss by compaction (within pack ice convergence) dominates the dynamic area loss, even in years when the export is largest. Results from a simple (Ekman) free-drift sea ice model, supported by results from the Lagrangian model, suggest that nonlinear effects between dynamic and thermodynamic area loss can be important for large negative anomalies in sea ice extent, in accord with previous modeling studies. A detailed analysis of two all-time record minimum years (2007 and 2012)—one with a semipermanent high in the southern Beaufort Sea and the other with a short-lived but extreme storm in the Pacific sector of the Arctic in late summer—shows that compaction by Ekman convergence together with large thermodynamic melt in the marginal ice zone dominated the sea ice area loss in 2007 whereas, in 2012, it was dominated by Ekman divergence amplified by sea–ice albedo feedback—together with an early melt onset. We argue that Ekman divergence from more intense summer storms when the sun is high above the horizon is a more likely mechanism for a “first-time” ice-free Arctic.

     
    more » « less
  3. Abstract

    The Bering Strait oceanic heat transport influences seasonal sea ice retreat and advance in the Chukchi Sea. Monitored since 1990, it depends on water temperature and factors controlling the volume transport, assumed to be local winds in the strait and an oceanic pressure difference between the Pacific and Arctic oceans (the “pressure head”). Recent work suggests that variability in the pressure head, especially during summer, relates to the strength of the zonal wind in the East Siberian Sea that raises or drops sea surface height in this area via Ekman transport. We confirm that westward winds in the East Siberian Sea relate to a broader central Arctic pattern of high sea level pressure and note that anticyclonic winds over the central Arctic Ocean also favor low September sea ice extent for the Arctic as a whole by promoting ice convergence and positive temperature anomalies. Month‐to‐month persistence in the volume transport and atmospheric circulation patterns is low, but the period 1980–2017 had a significant summertime (June–August) trend toward higher sea level pressure over the central Arctic Ocean, favoring increased transports. Some recent large heat transports are associated with high water temperatures, consistent with persistence of open water in the Chukchi Sea into winter and early ice retreat in spring. The highest heat transport recorded, October 2016, resulted from high water temperatures and ideal wind conditions yielding a record‐high volume transport. November and December 2005, the only months with southward volume (and thus heat) transports, were associated with southward winds in the strait.

     
    more » « less
  4. Abstract Predictability of seasonal sea ice advance in the Chukchi Sea has been investigated in the context of ocean heat transport from the Bering Strait; however, the underlying physical processes have yet to be fully clarified. Using the Pan-Arctic Ice–Ocean Modeling and Assimilation System (PIOMAS) reanalysis product (1979–2016), we examined seasonal predictability of sea ice advance in early winter (November–December) and its source using canonical correlation analysis. It was found that 2-month leading (September–October) surface heat flux and ocean heat advection is the major predictor for interannual variability of sea ice advance. Surface heat flux is related to the atmospheric cooling process, which has influenced sea ice area in the southeastern Chukchi Sea particularly in the 1980s and 1990s. Anomalous surface heat flux is induced by strong northeasterly winds related to the east Pacific/North Pacific teleconnection pattern. Ocean heat advection, which is related to fluctuation of volume transport in the Bering Strait, leads to decrease in the sea ice area in the northwestern Chukchi Sea. Diagnostic analysis revealed that interannual variability of the Bering Strait volume transport is governed by arrested topographic waves (ATWs) forced by southeasterly wind stress along the shelf of the East Siberian Sea. The contribution of ocean heat flux to sea ice advance has increased since the 2000s; therefore, it is suggested that the major factor influencing interannual variability of sea ice advance in early winter has shifted from atmospheric cooling to ocean heat advection processes. Significance Statement Predictability of sea ice advance in the marginal Arctic seas in early winter is a crucial issue regarding future projections of the midlatitude winter climate and marine ecosystem. This study examined seasonal predictability of sea ice advance in the Chukchi Sea in early winter using a statistical technique and historical model simulation data. We identified that atmospheric cooling and ocean heat transport are the two main predictors of sea ice advance, and that the impact of the latter has become amplified since the 2000s. Our new finding suggests that the precise information on wind-driven ocean currents and temperatures is crucial for the skillful prediction of interannual variability of sea ice advance under present and future climatic regimes. 
    more » « less
  5. Abstract West Antarctic ice-shelf thinning is primarily caused by ocean-driven basal melting. Here we assess ocean variability below Thwaites Eastern Ice Shelf (TEIS) and reveal the importance of local ocean circulation and sea-ice. Measurements obtained from two sub-ice-shelf moorings, spanning January 2020 to March 2021, show warming of the ice-shelf cavity and an increase in meltwater fraction of the upper sub-ice layer. Combined with ocean modelling results, our observations suggest that meltwater from Pine Island Ice Shelf feeds into the TEIS cavity, adding to horizontal heat transport there. We propose that a weakening of the Pine Island Bay gyre caused by prolonged sea-ice cover from April 2020 to March 2021 allowed meltwater-enriched waters to enter the TEIS cavity, which increased the temperature of the upper layer. Our study highlights the sensitivity of ocean circulation beneath ice shelves to local atmosphere-sea-ice-ocean forcing in neighbouring open oceans. 
    more » « less