skip to main content


Search for: All records

Award ID contains: 1744587

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The observed upper (0–50 m) Arctic Ocean warming since 1979 has been primarily attributed to anthropogenically driven changes in the high latitudes. Here, using both observational and modeling analyses, we demonstrate that a multiyear trend in the summertime large-scale atmospheric circulation, which we ascribe to internal variability, has played an important role in upper ocean warming in summer and fall over the past four decades due to sea ice-albedo effect induced by atmospheric dynamics. Nudging experiments in which the wind fields are constrained toward the observed state support this mechanism and suggest that the internal variability contribution to recent upper Arctic Ocean warming accounts for up to one quarter of warming over the past four decades and up to 60% of warming from 2000 to 2018. This suggests that climate models need to replicate this important internal process in order to realistically simulate Arctic Ocean temperature variability and trends.

     
    more » « less
  2. Abstract

    The Arctic Ocean’s Wandel Sea is the easternmost sector of the Last Ice Area, where thick, old sea ice is expected to endure longer than elsewhere. Nevertheless, in August 2020 the area experienced record-low sea ice concentration. Here we use satellite data and sea ice model experiments to determine what caused this record sea ice minimum. In our simulations there was a multi-year sea-ice thinning trend due to climate change. Natural climate variability expressed as wind-forced ice advection and subsequent melt added to this trend. In spring 2020, the Wandel Sea had a mixture of both thin and—unusual for recent years—thick ice, but this thick ice was not sufficiently widespread to prevent the summer sea ice concentration minimum. With continued thinning, more frequent low summer sea ice events are expected. We suggest that the Last Ice Area, an important refuge for ice-dependent species, is less resilient to warming than previously thought.

     
    more » « less
  3. Abstract. The Earth climate system is out of energy balance, and heat hasaccumulated continuously over the past decades, warming the ocean, the land,the cryosphere, and the atmosphere. According to the Sixth Assessment Reportby Working Group I of the Intergovernmental Panel on Climate Change,this planetary warming over multiple decades is human-driven and results inunprecedented and committed changes to the Earth system, with adverseimpacts for ecosystems and human systems. The Earth heat inventory providesa measure of the Earth energy imbalance (EEI) and allows for quantifyinghow much heat has accumulated in the Earth system, as well as where the heat isstored. Here we show that the Earth system has continued to accumulateheat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to aheating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority,about 89 %, of this heat is stored in the ocean, followed by about 6 %on land, 1 % in the atmosphere, and about 4 % available for meltingthe cryosphere. Over the most recent period (2006–2020), the EEI amounts to0.76±0.2 W m−2. The Earth energy imbalance is the mostfundamental global climate indicator that the scientific community and thepublic can use as the measure of how well the world is doing in the task ofbringing anthropogenic climate change under control. Moreover, thisindicator is highly complementary to other established ones like global meansurface temperature as it represents a robust measure of the rate of climatechange and its future commitment. We call for an implementation of theEarth energy imbalance into the Paris Agreement's Global Stocktake based onbest available science. The Earth heat inventory in this study, updated fromvon Schuckmann et al. (2020), is underpinned by worldwide multidisciplinarycollaboration and demonstrates the critical importance of concertedinternational efforts for climate change monitoring and community-basedrecommendations and we also call for urgently needed actions for enablingcontinuity, archiving, rescuing, and calibrating efforts to assure improvedand long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4. 
    more » « less
  4. Abstract The Arctic Ocean has seen a remarkable reduction in sea ice coverage, thickness and age since the 1980s. These changes are most pronounced in the Beaufort Sea, with a transition around 2007 from a regime dominated by multi-year sea ice to one with large expanses of open water during the summer. Using satellite-based observations of sea ice, an atmospheric reanalysis and a coupled ice-ocean model, we show that during the summers of 2020 and 2021, the Beaufort Sea hosted anomalously large concentrations of thick and old ice. We show that ice advection contributed to these anomalies, with 2020 dominated by eastward transport from the Chukchi Sea, and 2021 dominated by transport from the Last Ice Area to the north of Canada and Greenland. Since 2007, cool season (fall, winter, and spring) ice volume transport into the Beaufort Sea accounts for ~45% of the variability in early summer ice volume—a threefold increase from that associated with conditions prior to 2007. This variability is likely to impact marine infrastructure and ecosystems. 
    more » « less
  5. Abstract Over the past decades, Arctic climate has exhibited significant changes characterized by strong Pan-Arctic warming and a large scale wind shift trending toward an anticyclonic anomaly centered over Greenland and the Arctic ocean. Recent work has suggested that this wind change is able to warm the Arctic atmosphere and melt sea ice through dynamical-driven warming, moistening and ice drift effects. However, previous examination of this linkage lacks a capability to fully consider the complex nature of the sea ice response to the wind change. In this study, we perform a more rigorous test of this idea by using a coupled high-resolution modelling framework with observed winds nudged over the Arctic that allows for a comparison of these wind-induced effects with observations and simulated effects forced by anthropogenic forcing. Our nudging simulation can well capture observed variability of atmospheric temperature, sea ice and the radiation balance during the Arctic summer and appears to simulate around 30% of Arctic warming and sea ice melting over the whole period (1979-2020) and more than 50% over the period 2000 to 2012, which is the fastest Arctic warming decade in the satellite era. In particular, in the summer of 2020, a similar wind pattern reemerged to induce the second-lowest sea ice extent since 1979, suggesting that large scale wind changes in the Arctic is essential in shaping Arctic climate on interannual and interdecadal time scales and may be critical to determine Arctic climate variability in the coming decades. 
    more » « less
  6. null (Ed.)
    Abstract We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km 3 month -1 yr -1 on average over 2002-2019 derived from satellite observations. 
    more » « less
  7. null (Ed.)
    Abstract. Human-induced atmospheric composition changes cause a radiative imbalance atthe top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain ofthe Earth system – and particularly how much and where the heat isdistributed – is fundamental to understanding how this affects warmingocean, atmosphere and land; rising surface temperature; sea level; and lossof grounded and floating ice, which are fundamental concerns for society.This study is a Global Climate Observing System (GCOS) concertedinternational effort to update the Earth heat inventory and presents anupdated assessment of ocean warming estimates as well as new and updated estimatesof heat gain in the atmosphere, cryosphere and land over the period1960–2018. The study obtains a consistent long-term Earth system heat gainover the period 1971–2018, with a total heat gain of 358±37 ZJ,which is equivalent to a global heating rate of 0.47±0.1 W m−2.Over the period 1971–2018 (2010–2018), the majority of heat gain is reportedfor the global ocean with 89 % (90 %), with 52 % for both periods inthe upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 %(5 %) over these periods, 4 % (3 %) is available for the melting ofgrounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Ourresults also show that EEI is not only continuing, but also increasing: the EEIamounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization ofclimate, the goal of the universally agreed United Nations Framework Convention on ClimateChange (UNFCCC) in 1992 and the ParisAgreement in 2015, requires that EEI be reduced to approximately zero toachieve Earth's system quasi-equilibrium. The amount of CO2 in theatmosphere would need to be reduced from 410 to 353 ppm to increase heatradiation to space by 0.87 W m−2, bringing Earth back towards energybalance. This simple number, EEI, is the most fundamental metric that thescientific community and public must be aware of as the measure of how wellthe world is doing in the task of bringing climate change under control, andwe call for an implementation of the EEI into the global stocktake based onbest available science. Continued quantification and reduced uncertaintiesin the Earth heat inventory can be best achieved through the maintenance ofthe current global climate observing system, its extension into areas ofgaps in the sampling, and the establishment of an international framework forconcerted multidisciplinary research of the Earth heat inventory aspresented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOIhttps://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2(von Schuckmann et al., 2020). 
    more » « less
  8. Abstract PIOMAS-20C, an Arctic sea ice reconstruction for 1901–2010, is produced by forcing the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) with ERA-20C atmospheric data. ERA-20C performance over Arctic sea ice is assessed by comparisons with measurements and data from other reanalyses. ERA-20C performs similarly with respect to the annual cycle of downwelling radiation, air temperature, and wind speed compared to reanalyses with more extensive data assimilation such as ERA-Interim and MERRA. PIOMAS-20C sea ice thickness and volume are then compared with in situ and aircraft remote sensing observations for the period of ~1950–2010. Error statistics are similar to those for PIOMAS. We compare the magnitude and patterns of sea ice variability between the first half of the twentieth century (1901–40) and the more recent period (1980–2010), both marked by sea ice decline in the Arctic. The first period contains the so-called early-twentieth-century warming (ETCW; ~1920–40) during which the Atlantic sector saw a significant decline in sea ice volume, but the Pacific sector did not. The sea ice decline over the 1979–2010 period is pan-Arctic and 6 times larger than the net decline during the 1901–40 period. Sea ice volume trends reconstructed solely from surface temperature anomalies are smaller than PIOMAS-20C, suggesting that mechanisms other than warming, such as changes in ice motion and deformation, played a significant role in determining sea ice volume trends during both periods. 
    more » « less