skip to main content

Title: Specimen-displacement correction for powder X-ray diffraction in Debye–Scherrer geometry with a flat area detector
The effect of small changes in the specimen-to-detector distance on the unit-cell parameters is examined for synchrotron powder diffraction in Debye–Scherrer (transmission) geometry with a flat area detector. An analytical correction equation is proposed to fix the shift in 2θ values due to specimen capillary displacement. This equation does not require the use of an internal reference material, is applied during the Rietveld refinement step, and is analogous to the specimen-displacement correction equations for Bragg–Brentano and curved-detector Debye–Scherrer geometry experiments, but has a different functional form. The 2θ correction equation is compared with another specimen-displacement correction based on the use of an internal reference material in which new integration and calibration parameters of area-detector images are determined. Example data sets showing the effect of a 3.3 mm specimen displacement on the unit-cell parameters for 25°C CeO 2 , including both types of displacement correction, are described. These experiments were performed at powder X-ray diffraction beamlines at the National Synchrotron Light Source II at Brookhaven National Laboratory and the Advanced Photon Source at Argonne National Laboratory.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Applied Crystallography
Page Range / eLocation ID:
160 to 166
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Measured intensity in high-energy monochromatic X-ray diffraction (HEXD) experiments provides information regarding the microstructure of the crystalline material under study. The location of intensity on an areal detector is determined by the lattice spacing and orientation of crystals so that changes in theheterogeneityof these quantities are reflected in the spreading of diffraction peaks over time. High temporal resolution of such dynamics can now be experimentally observed using technologies such as the mixed-mode pixel array detector (MM-PAD) which facilitates in situ dynamic HEXD experiments to study plasticity and its underlying mechanisms. In this paper, we define and demonstrate a feature computed directly from such diffraction time series data quantifying signal spread in a manner that is correlated with plastic deformation of the sample. A distinguishing characteristic of the analysis is the capability to describe the evolution from the distinct diffraction peaks of an undeformed alloy sample through to the non-uniform Debye–Scherrer rings developed upon significant plastic deformation. We build on our previous work modeling data using an overcomplete dictionary by treating temporal measurements jointly to improve signal spread recovery. We demonstrate our approach in simulations and on experimental HEXD measurements captured using the MM-PAD. Our method for characterizing the temporal evolution of signal spread is shown to provide an informative means of data analysis that adds to the capabilities of existing methods. Our work draws on ideas from convolutional sparse coding and requires solving a coupled convex optimization problem based on the alternating direction method of multipliers.

    more » « less
  2. Edited by H. Brand, Australian Synchrotron (Ed.)
    In the article by Hulbert & Kriven (2023), there is an error in Fig. 2(b) which shows the Bragg–Brentano geometry for an X-ray diffraction (XRD) experiment. The arc denoting the angle 2θ + δ was mistakenly drawn so that it ended at the base of the specimen. However, it should extend to the incident beam. The revised Fig. 2(b) diagram is given here, shown in Fig. 1. Both the derived equation and the conclusions in the original article are unaffected by this figure correction. 
    more » « less
  3. null (Ed.)
    Abstract Calcium carbonate (CaCO3) is one of the most abundant carbonates on Earth's surface and transports carbon to Earth's interior via subduction. Although some petrological observations support the preservation of CaCO3 in cold slabs to lower mantle depths, the geophysical properties and stability of CaCO3 at these depths are not known, due in part to complicated polymorphic phase transitions and lack of constraints on thermodynamic properties. Here we measured thermal equation of state of CaCO3-Pmmn, the stable polymorph of CaCO3 through much of the lower mantle, using synchrotron X-ray diffraction in a laser-heated diamond-anvil cell up to 75 GPa and 2200 K. The room-temperature compression data for CaCO3-Pmmn are fit with third-order Birch-Murnaghan equation of state, yielding KT0 = 146.7 (±1.9) GPa and K′0 = 3.4(±0.1) with V0 fixed to the value determined by ab initio calculation, 97.76 Å3. High-temperature compression data are consistent with zero-pressure thermal expansion αT = a0 + a1T with a0 = 4.3(±0.3)×10-5 K-1, a1 = 0.8(±0.2)×10-8 K-2, temperature derivative of the bulk modulus (∂KT/∂T)P = –0.021(±0.001) GPa/K; the Grüneisen parameter γ0 = 1.94(±0.02), and the volume independent constant q = 1.9(±0.3) at a fixed Debye temperature θ0 = 631 K predicted via ab initio calculation. Using these newly determined thermodynamic parameters, the density and bulk sound velocity of CaCO3-Pmmn and (Ca,Mg)-carbonate-bearing eclogite are quantitatively modeled from 30 to 80 GPa along a cold slab geotherm. With the assumption that carbonates are homogeneously mixed into the slab, the results indicate the presence of carbonates in the subducted slab is unlikely to be detected by seismic observations, and the buoyancy provided by carbonates has a negligible effect on slab dynamics. 
    more » « less
  4. Abstract

    Here, the combination of theoretical computations followed by rapid experimental screening and in situ diffraction studies is demonstrated as a powerful strategy for novel compounds discovery. When applied for the previously “empty” Na−Zn−Bi system, such an approach led to four novel phases. The compositional space of this system was rapidly screened via the hydride route method and the theoretically predicted NaZnBi (PbClF type,P4/nmm) and Na11Zn2Bi5(Na11Cd2Sb5type,P) phases were successfully synthesized, while other computationally generated compounds on the list were rejected. In addition, single crystal X‐ray diffraction studies of NaZnBi indicate minor deviations from the stoichiometric 1 : 1 : 1 molar ratio. As a result, two isostructural (PbClF type,P4/nmm) Zn‐deficient phases with similar compositions, but distinctly different unit cell parameters were discovered. The vacancies on Zn sites and unit cell expansion were rationalized from bonding analysis using electronic structure calculations on stoichiometric “NaZnBi”.In‐situsynchrotron powder X‐ray diffraction studies shed light on complex equilibria in the Na−Zn−Bi system at elevated temperatures. In particular, the high‐temperature polymorphHT‐Na3Bi (BiF3type,Fmm) was obtained as a product of Na11Zn2Bi5decomposition above 611 K.HT‐Na3Bi cannot be stabilized at room temperature by quenching, and this type of structure was earlier observed in the high‐pressure polymorphHP‐Na3Bi above 0.5 GPa. The aforementioned approach of predictive synthesis can be extended to other multinary systems.

    more » « less
  5. This research investigates the design of structurally performant, lightweight architectural elements produced through concrete 3D printing (C3DP). Traditionally, concrete requires dense and sturdy formwork, whose production adds significantly to the total cost and results in massive and heavy parts after demolding. C3DP offers the unique opportunity to both eliminate the need for formwork and to create lighter parts by introducing internal voids and cavities. The advent of additive manufacturing in a broad range of scales, materials, industries, and applications, led to increased interest and intense research into different types of porous structures, their geometry, and structural performance under various boundary conditions. Precise control over the sparse distribution of material allows not only for parts with similar strength at reduced mass but even for modifications of mechanical properties, like turning brittle materials into elastic or shock-absorbent ones. While with powder-based additive manufacturing processes like metal 3D printing, truss-based lattices have become very popular for the light-weighting of parts or to provide tissue growth scaffolds for medical implants, their geometry – a sparse space frame resulting in numerous individual contour islands and accentuated overhangs – cannot as easily be produced by C3DP, which is based on a continuous material extrusion. Alternative types of micro-structures, so-called triply periodic minimal surfaces (TPMS), are better suited for this process as they are, as their name suggests, consisting of one continuous surface dividing space into two separate but interwoven subspaces. TPMS are therefore very popular for the efficient design of heat exchangers. We develop and present a continuous and integrated workflow, in which the architectural elements and their structural requirements are designed through transitioning back and forth between the force and the form diagram using 3D graphic statics [1]. The members and their topology from the abstract graph of the conceptual form diagram are seamlessly connected to the volumetric modeling (VM) framework, responsible for the definition of the part geometry [2]. VM represents form assigned distance functions (SDF) and can easily handle complex topologies and flawless Boolean operations of not only the outer shell geometry but also the internal micro-structural infill patterns (Fig. 1, a). In an iterative feedback loop, the infill can be further optimized to leave the material only along certain internal stress trajectories (force flows). This functional grading controlling the relative density is done based on the FE analysis results. The stress distribution is thereby defined as a three-dimensional field (Fig. 1, b). Its values can factor into the SDF equation and be used to modify the wavelength (periodicity) of the TPMS, the local thickness of the surface shell, the solid to void fraction by shifting the threshold iso-value or even the alignment and orientation of the unit cells (Fig. 1, c). They can be arranged in an orthogonal, polar- or even spherical coordinate system to optimally adapt to structural necessities. The TPMS pattern can also gradually transition from one type into another type along the gradient of a spatial function. 
    more » « less