Cognitive control, or executive function, is a key feature of human cognition, allowing individuals to plan, acquire new information, or adopt new strategies when the circumstances change. Yet it is unclear which factors promote the evolution of more sophisticated executive-function abilities such as those possessed by humans. Examining cognitive control in nonhuman primates, our closest relatives, can help to identify these evolutionary processes. Here, we developed a novel battery to experimentally measure multiple aspects of cognitive control in primates: temporal discounting, motor inhibition, short-term memory, reversal learning, novelty responses, and persistence. We tested lemur species with targeted, independent variation in both ecological and social features (ruffed lemurs, Coquerel’s sifakas, ring-tailed lemurs, and mongoose lemurs; N = 39) and found that ecological rather than social characteristics best predicted patterns of cognitive control across these species. This highlights the importance of integrating cognitive data with species’ natural history to understand the origins of complex cognition.
more »
« less
Under pressure: the interaction between high-stakes contexts and individual differences in decision-making in humans and non-human species
Abstract Observed behavior can be the result of complex cognitive processes that are influenced by environmental factors, physiological process, and situational features. Pressure, a feature of a situation in which an individual’s outcome is impacted by his or her own ability to perform, has been traditionally treated as a human-specific phenomenon and only recently have pressure-related deficits been considered in relation to other species. However, there are strong similarities in biological and cognitive systems among mammals (and beyond), and high-pressure situations are at least theoretically common in the wild. We hypothesize that other species are sensitive to pressure and that we can learn about the evolutionary trajectory of pressure responses by manipulating pressure experimentally in these other species. Recent literature indicates that, as in humans, pressure influences responses in non-human primates, with either deficits in ability to perform (“choking”) or an ability to thrive when the stakes are high. Here, we synthesize the work to date on performance under pressure in humans and how hormones might be related to individual differences in responses. Then, we discuss why we would expect to see similar effects of pressure in non-humans and highlight the existing evidence for how other species respond. We argue that evidence suggests that other species respond to high-pressure contexts in similar ways as humans, and that responses to pressure are a critical missing piece of our understanding of cognition in human and non-human animals. Understanding pressure’s effects could provide insight into individual variation in decision-making in comparative cognition and the evolution of human decision-making.
more »
« less
- PAR ID:
- 10403867
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Animal Cognition
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1435-9448
- Page Range / eLocation ID:
- p. 1103-1117
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The onus on the average person is greater than ever before to make sense of large amounts of readily accessible quantitative information, but the ability and confidence to do so are frequently lacking. Many people lack practical mathematical skills that are essential for evaluating risks, probabilities and numerical outcomes such as survival rates for medical treatments, income from retirement savings plans or monetary damages in civil trials. In this Review, we integrate research on objective and subjective numeracy, focusing on cognitive and metacognitive factors that distort human perceptions and foment systematic biases in judgement and decision making. Paradoxically, an important implication of this research is that a literal focus on objective numbers and mechanical number crunching is misguided. Numbers can be a matter of life and death but a person who uses rote strategies (verbatim representations) cannot take advantage of the information contained in the numbers because 'rote' strategies are, by definition, processing without meaning. Verbatim representations (verbatim is only surface form, not meaning) treat numbers as data as opposed to information. We highlight a contrasting approach of gist extraction: organizing numbers meaningfully, interpreting them qualitatively and making meaningful inferences about them. Efforts to improve numerical cognition and its practical applications can benefit from emphasizing the qualitative meaning of numbers in context - the gist - building on the strengths of humans as intuitive mathematicians. Thus, we conclude by reviewing evidence that gist training facilitates transfer to new contexts and, because it is more durable, longer-lasting improvements in decision making.more » « less
-
Abstract Humans often experience striking performance deficits when their outcomes are determined by their own performance, colloquially referred to as “choking under pressure.” Physiological stress responses that have been linked to both choking and thriving are well-conserved in primates, but it is unknown whether other primates experience similar effects of pressure. Understanding whether this occurs and, if so, its physiological correlates, will help clarify the evolution and proximate causes of choking in humans. To address this, we trained capuchin monkeys on a computer game that had clearly denoted high- and low-pressure trials, then tested them on trials with the same signals of high pressure, but no difference in task difficulty. Monkeys significantly varied in whether they performed worse or better on high-pressure testing trials and performance improved as monkeys gained experience with performing under pressure. Baseline levels of cortisol were significantly negatively related to performance on high-pressure trials as compared to low-pressure trials. Taken together, this indicates that less experience with pressure may interact with long-term stress to produce choking behavior in early sessions of a task. Our results suggest that performance deficits (or improvements) under pressure are not solely due to human specific factors but are rooted in evolutionarily conserved biological factors.more » « less
-
Many domains of AI and its effects are established, which mainly rely on their integration modeling cognition of human and AI agents, collecting and representing knowledge using them at the human level, and maintaining decision-making processes towards physical action eligible to and in cooperation with humans. Especially in human-robot interaction, many AI and robotics technologies are focused on human- robot cognitive modeling, from visual processing to symbolic reasoning and from reactive control to action recognition and learning, which will support human-multi-agent cooperative achieving tasks. However, the main challenge is efficiently combining human motivations and AI agents’ purposes in a sharing architecture and reaching a consensus in complex environments and missions. To fill this gap, this workshop brings together researchers from different communities inter- ested in multi-agent systems (MAS) and human-robot interaction (HRI) to explore potential approaches, future research directions, and domains in human-multi-agent cognitive fusion.more » « less
-
null (Ed.)Uncertainty is a ubiquitous component of human economic behaviour, yet people can vary in their preferences for risk across populations, individuals and different points in time. As uncertainty also characterizes many aspects of animal decision-making, comparative research can help evaluate different potential mechanisms that generate this variation, including the role of biological differences or maturational change versus cultural learning, as well as identify human-unique components of economic decision-making. Here, we examine decision-making under risk across non-human primates, our closest relatives. We first review theoretical approaches and current methods for understanding decision-making in animals. We then assess the current evidence for variation in animal preferences between species and populations, between individuals based on personality, sex and age, and finally, between different contexts and individual states. We then use these primate data to evaluate the processes that can shape human decision-making strategies and identify the primate foundations of human economic behaviour. This article is part of the theme issue ‘Existence and prevalence of economic behaviours among non-human primates’.more » « less
An official website of the United States government
