Background:Evaluation studies frequently draw on fallible outcomes that contain significant measurement error. Ignoring outcome measurement error in the planning stages can undermine the sufficiency and efficiency of an otherwise well-designed study and can further constrain the evidence studies bring to bear on the effectiveness of programs. Objectives:We develop simple formulas to adjust statistical power, minimum detectable effect (MDE), and optimal sample allocation formulas for two-level cluster- and multisite-randomized designs when the outcome is subject to measurement error. Results:The resulting adjusted formulas suggest that outcome measurement error typically amplifies treatment effect uncertainty, reduces power, increases the MDE, and undermines the efficiency of conventional optimal sampling schemes. Therefore, achieving adequate power for a given effect size will typically demand increased sample sizes when considering fallible outcomes, while maintaining design efficiency will require increasing portions of a budget be applied toward sampling a larger number of individuals within clusters. We illustrate evaluation planning with the new formulas while comparing them to conventional formulas using hypothetical examples based on recent empirical studies. To encourage adoption of the new formulas, we implement them in the R package PowerUpR and in the PowerUp software.
more »
« less
When can we ignore measurement error in the running variable?
Summary In many applications of regression discontinuity designs, the running variable used to assign treatment is only observed with error. We show that, provided the observed running variable (i) correctly classifies treatment assignment and (ii) affects the conditional means of potential outcomes smoothly, ignoring the measurement error nonetheless yields an estimate with a causal interpretation: the average treatment effect for units whose observed running variable equals the cutoff. Possibly after doughnut trimming, these assumptions accommodate a variety of settings where support of the measurement error is not too wide. An empirical application illustrates the results for both sharp and fuzzy designs.
more »
« less
- Award ID(s):
- 2049356
- PAR ID:
- 10403895
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Applied Econometrics
- Volume:
- 38
- Issue:
- 5
- ISSN:
- 0883-7252
- Page Range / eLocation ID:
- p. 735-750
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Instrumental variable methods can identify causal effects even when the treatment and outcome are confounded. We study the problem of imperfect measurements of the binary instrumental variable, treatment and outcome. We first consider nondifferential measurement errors, that is, the mismeasured variable does not depend on other variables given its true value. We show that the measurement error of the instrumental variable does not bias the estimate, that the measurement error of the treatment biases the estimate away from zero, and that the measurement error of the outcome biases the estimate toward zero. Moreover, we derive sharp bounds on the causal effects without additional assumptions. These bounds are informative because they exclude zero. We then consider differential measurement errors, and focus on sensitivity analyses in those settings.more » « less
-
Cassio de Campos; Marloes H. Maathuis (Ed.)When data contains measurement errors, it is necessary to make modeling assumptions relating the error-prone measurements to the unobserved true values. Work on measurement error has largely focused on models that fully identify the parameter of interest. As a result, many practically useful models that result in bounds on the target parameter -- known as partial identification -- have been neglected. In this work, we present a method for partial identification in a class of measurement error models involving discrete variables. We focus on models that impose linear constraints on the tar- get parameter, allowing us to compute partial identification bounds using off-the-shelf LP solvers. We show how several common measurement error assumptions can be composed with an extended class of instrumental variable-type models to create such linear constraint sets. We further show how this approach can be used to bound causal parameters, such as the average treatment effect, when treatment or outcome variables are measured with error. Using data from the Oregon Health Insurance Experiment, we apply this method to estimate bounds on the effect Medicaid enrollment has on depression when depression is measured with error.more » « less
-
In this article, we introduce the Stata (and R) package rdmulti, which consists of three commands (rdmc, rdmcplot, rdms) for analyzing regression-discontinuity (RD) designs with multiple cutoffs or multiple scores. The command rdmc applies to noncumulative and cumulative multicutoff RD settings. It calculates pooled and cutoff-specific RD treatment effects and provides robust biascorrected inference procedures. Postestimation and inference is allowed. The command rdmcplot offers RD plots for multicutoff settings. Finally, the command rdms concerns multiscore settings, covering in particular cumulative cutoffs and two running variable contexts. It also calculates pooled and cutoff-specific RD treatment effects, provides robust bias-corrected inference procedures, and allows for postestimation and inference. These commands use the Stata (and R) package rdrobust for plotting, estimation, and inference. Companion R functions with the same syntax and capabilities are provided.more » « less
-
Summary Modern empirical work in regression discontinuity (RD) designs often employs local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by construction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals in terms of coverage error. We establish valid coverage error expansions for RBC confidence interval estimators and use these results to propose new inference-optimal bandwidth choices for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point estimator is too large when the goal is to construct RBC confidence intervals with the smaller coverage error rate. We further optimize the constant terms behind the coverage error to derive new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions also establish that RBC inference yields higher-order refinements (relative to traditional undersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical findings are illustrated with a Monte Carlo experiment and an empirical application, and the main methodological results are available in R and Stata packages.more » « less