skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis of regression-discontinuity designs with multiple cutoffs or multiple scores
In this article, we introduce the Stata (and R) package rdmulti, which consists of three commands (rdmc, rdmcplot, rdms) for analyzing regression-discontinuity (RD) designs with multiple cutoffs or multiple scores. The command rdmc applies to noncumulative and cumulative multicutoff RD settings. It calculates pooled and cutoff-specific RD treatment effects and provides robust biascorrected inference procedures. Postestimation and inference is allowed. The command rdmcplot offers RD plots for multicutoff settings. Finally, the command rdms concerns multiscore settings, covering in particular cumulative cutoffs and two running variable contexts. It also calculates pooled and cutoff-specific RD treatment effects, provides robust bias-corrected inference procedures, and allows for postestimation and inference. These commands use the Stata (and R) package rdrobust for plotting, estimation, and inference. Companion R functions with the same syntax and capabilities are provided.  more » « less
Award ID(s):
1357561
PAR ID:
10505094
Author(s) / Creator(s):
; ;
Publisher / Repository:
Sage
Date Published:
Journal Name:
The Stata Journal: Promoting communications on statistics and Stata
Volume:
20
Issue:
4
ISSN:
1536-867X
Page Range / eLocation ID:
866 to 891
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: The regression discontinuity (RD) design is a commonly used non-experimental approach for evaluating policy or program effects. However, this approach heavily relies on the untestable assumption that distribution of confounders or average potential outcomes near or at the cutoff are comparable. When there are multiple cutoffs that create several discontinuities in the treatment assignments, factors that can lead this assumption to the failure at one cutoff may overlap with those at other cutoffs, invalidating the causal effects from each cutoff. In this study, we propose a novel approach for testing the causal hypothesis of no RD treatment effect that can remain valid even when the assumption commonly considered in the RD design does not hold. We propose leveraging variations in multiple available cutoffs and constructing a set of instrumental variables (IVs). We then combine the evidence from multiple IVs with a direct comparison under the local randomization framework. This reinforced design that combines multiple factors from a single data can produce several, nearly independent inferential results that depend on very different assumptions with each other. Our proposed approach can be extended to a fuzzy RD design. We apply our method to evaluate the effect of having access to higher achievement schools on students' academic performances in Romania. 
    more » « less
  2. We present a practical guide for the analysis of regression discontinuity (RD) designs in biomedical contexts. We begin by introducing key concepts, assumptions, and estimands within both the continuity‐based framework and the local randomization framework. We then discuss modern estimation and inference methods within both frameworks, including approaches for bandwidth or local neighborhood selection, optimal treatment effect point estimation, and robust bias‐corrected inference methods for uncertainty quantification. We also overview empirical falsification tests that can be used to support key assumptions. Our discussion focuses on two particular features that are relevant in biomedical research: (i) fuzzy RD designs, which often arise when therapeutic treatments are based on clinical guidelines, but patients with scores near the cutoff are treated contrary to the assignment rule; and (ii) RD designs with discrete scores, which are ubiquitous in biomedical applications. We illustrate our discussion with three empirical applications: the effect CD4 guidelines for anti‐retroviral therapy on retention of HIV patients in South Africa, the effect of genetic guidelines for chemotherapy on breast cancer recurrence in the United States, and the effects of age‐based patient cost‐sharing on healthcare utilization in Taiwan. Complete replication materials employing publicly available data and statistical software inPython,RandStataare provided, offering researchers all necessary tools to conduct an RD analysis. 
    more » « less
  3. Summary Modern empirical work in regression discontinuity (RD) designs often employs local polynomial estimation and inference with a mean square error (MSE) optimal bandwidth choice. This bandwidth yields an MSE-optimal RD treatment effect estimator, but is by construction invalid for inference. Robust bias-corrected (RBC) inference methods are valid when using the MSE-optimal bandwidth, but we show that they yield suboptimal confidence intervals in terms of coverage error. We establish valid coverage error expansions for RBC confidence interval estimators and use these results to propose new inference-optimal bandwidth choices for forming these intervals. We find that the standard MSE-optimal bandwidth for the RD point estimator is too large when the goal is to construct RBC confidence intervals with the smaller coverage error rate. We further optimize the constant terms behind the coverage error to derive new optimal choices for the auxiliary bandwidth required for RBC inference. Our expansions also establish that RBC inference yields higher-order refinements (relative to traditional undersmoothing) in the context of RD designs. Our main results cover sharp and sharp kink RD designs under conditional heteroskedasticity, and we discuss extensions to fuzzy and other RD designs, clustered sampling, and pre-intervention covariates adjustments. The theoretical findings are illustrated with a Monte Carlo experiment and an empirical application, and the main methodological results are available in R and Stata packages. 
    more » « less
  4. In this article, we introduce the packagebinsreg, which implements the binscatter methods developed by Cattaneo et al. (2024a, arXiv:2407.15276 [stat.EM]; 2024b,American Economic Review114: 1488–1514). The package comprises seven commands:binsreg, binslogit, binsprobit, binsqreg, binstest binspwc, andbinsregselect. The first four commands implement binscatter plotting, point estimation, and uncertainty quantification (confidence intervals and confidence bands) for least-squares linear binscatter regression (binsreg) and for nonlinear binscatter regression (binslogitfor logit regression,binsprobitfor. probit regression, andbinsqregfor quantile regression). The next two commands focus on pointwise and uniform inference:binstestimplements hypothesis testing procedures for parametric specifications and for nonparametric shape restrictions of the unknown regression function, whilebinspwcimplements multigroup pairwise statistical comparisons. The last command,binsregselect, implements. data-driven number-of-bins selectors. The commands offer binned scatterplots and allow for covariate adjustment, weighting, clustering, and multisample analysis, which is useful when studying treatment-effect heterogeneity in randomizec and observational studies, among many other features. 
    more » « less
  5. The regression discontinuity (RD) design is one of the most widely used nonexperimental methods for causal inference and program evaluation. Over the last two decades, statistical and econometric methods for RD analysis have expanded and matured, and there is now a large number of methodological results for RD identification, estimation, inference, and validation. We offer a curated review of this methodological literature organized around the two most popular frameworks for the analysis and interpretation of RD designs: the continuity framework and the local randomization framework. For each framework, we discuss three main topics: ( a) designs and parameters, focusing on different types of RD settings and treatment effects of interest; ( b) estimation and inference, presenting the most popular methods based on local polynomial regression and methods for the analysis of experiments, as well as refinements, extensions, and alternatives; and ( c) validation and falsification, summarizing an array of mostly empirical approaches to support the validity of RD designs in practice. 
    more » « less