Abstract Phosphorus (P) limits or co‐limits plant and microbial life in multiple ecosystems, including the arctic tundra. Although current global carbon (C) models focus on the coupling between soil nitrogen (N) and C, ecosystem P response to climate warming may also influence the global C cycle. Permafrost soils may see enhanced or reduced P availability under climate warming through multiple mechanisms including changing litter inputs through plant community change, changing plant–microbial dynamics, altered rates of mineralization of soil organic P through increased microbial activity, and newly exposed mineral‐bound P via deeper thaw. We investigated the effect of long‐term warming on plant leaf, multiple soil and microbial C, N, and P pools, and microbial extracellular enzyme activities, in Alaskan tundra plots underlain by permafrost. Here, we show that 25 yr of experimental summer warming increases community‐level plant leaf P through changing community composition to favour relatively P‐rich plant species. However, despite associated increases in P‐rich litter inputs, we found only a few responses in the belowground pools of P available for plant and microbial uptake, including a weak positive response for citric acid–extractable PO4in the surface soil, a decrease in microbial biomass P, and no change in soil P (or C or N) stocks. This weak, neutral, or negative belowground P response to warming despite enhanced litter P inputs is consistent with a growing number of studies in the arctic tundra that find no long‐term response of soil C and N stocks to warming.
more »
« less
Site-specific responses of fungal and bacterial abundances to experimental warming in litter and soil across Arctic and alpine tundra
Vegetation change of the Arctic tundra due to global warming is a well-known process, but the implication for the belowground microbial communities, key in nutrient cycling and decomposition, is poorly understood. We characterized the fungal and bacterial abundances in litter and soil layers across 16 warming experimental sites at 12 circumpolar locations. We investigated the relationship between microbial abundances and nitrogen (N) and carbon (C) isotopic signatures, indicating shifts in microbial processes with warming. Microbial abundances were 2–3 orders of magnitude larger in litter than in soil. Local, site-dependent responses of microbial abundances were variable, and no general effect of warming was detected. The only generalizable trend across sites was a dependence between the warming response ratios and C:N ratio in controls, highlighting a legacy of the vegetation on the microbial response to warming. We detected a positive effect of warming on the litter mass and δ 15 N, which was linked to bacterial abundance under warmed conditions. This effect was stronger in experimental sites dominated by deciduous shrubs, suggesting an altered bacterial N-cycling with increased temperatures, mediated by the vegetation, and with possible consequences on ecosystem feedbacks to climate change.
more »
« less
- Award ID(s):
- 1836839
- PAR ID:
- 10403920
- Date Published:
- Journal Name:
- Arctic Science
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2368-7460
- Page Range / eLocation ID:
- 992 to 1005
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Microbial nitrogen (N) fixation accounts forc. 97% of natural N inputs to terrestrial ecosystems. These microbes can be free‐living in the soil and leaf litter (asymbiotic) or in symbiosis with plants. Warming is expected to increase N‐fixation rates because warmer temperatures favor the growth and activity of N‐fixing microbes.We investigated the effects of warming on asymbiotic components of N fixation at a field warming experiment in Puerto Rico. We analyzed the function and composition of bacterial communities from surface soil and leaf litter samples.Warming significantly increased asymbiotic N‐fixation rates in soil by 55% (to 0.002 kg ha−1 yr−1) and by 525% in leaf litter (to 14.518 kg ha−1 yr−1). This increase in N fixation was associated with changes in the N‐fixing bacterial community composition and soil nutrients.Our findings suggest that warming increases the natural N inputs from the atmosphere into this tropical forest due to changes in microbial function and composition, especially in the leaf litter. Given the importance of leaf litter in nutrient cycling, future research should investigate other aspects of N cycles in the leaf litter under warming conditions.more » « less
-
Abstract Human activities have led to increased deposition of nitrogen (N) and phosphorus (P) into soils. Nutrient enrichment of soils is known to increase plant biomass and rates of microbial litter decomposition. However, interacting effects of hydrologic position and associated changes to soil moisture can constrain microbial activity and lead to unexpected nutrient feedbacks on microbial community structure–function relationships. Examining feedbacks of nutrient enrichment on decomposition rates is essential for predicting microbial contributions to carbon (C) cycling as atmospheric deposition of nutrients persists. This study explored how long‐term nutrient addition and contrasting litter chemical composition influenced soil bacterial community structure and function. We hypothesized that long‐term nutrient enrichment of low fertility soils alters bacterial community structure and leads to higher rates of litter decomposition especially for low C:N litter, but low‐nutrient and dry conditions limit microbial decomposition of high C:N ratio litter. We leveraged a long‐term fertilization experiment to test how nutrient enrichment and hydrologic manipulation (due to ditches) affected decomposition and soil bacterial community structure in a nutrient‐poor coastal plain wetland. We conducted a litter bag experiment and characterized litter‐associated and bulk soil microbiomes using 16S rRNA bacterial sequencing and quantified litter mass losses and soil physicochemical properties. Results revealed that distinct bacterial communities were involved in decomposing higher C:N ratio litter more quickly in fertilized compared to unfertilized soils especially under drier soil conditions, while decomposition rates of lower C:N ratio litter were similar between fertilized and unfertilized plots. Bacterial community structure in part explained litter decomposition rates, and long‐term fertilization and drier hydrologic status affected bacterial diversity and increased decomposition rates. However, community composition associated with high C:N litter was similar in wetter plots with available nitrate detected, regardless of fertilization treatment. This study provides insight into long‐term fertilization effects on soil bacterial diversity and composition, decomposition, and the increased potential for soil C loss as nutrient enrichment and hydrology interact to affect historically low‐nutrient ecosystems.more » « less
-
Global change drivers that modify the quality and quantity of litter inputs to soil affect greenhouse gas fluxes, and thereby constitute a feedback to climate change. Carbon cycling in the Yukon-Kuskokwim (Y-K) River Delta, a subarctic wetland system, is influenced by landscape variations in litter quality and quantity generated by herbivores (migratory birds) that create ‘grazing lawns’ of short stature, nitrogen-rich vegetation. To identify the mechanisms by which these changes in litter inputs affect soil carbon balance, we independently manipulated qualities and quantities of litter representative of levels found in the Y-K Delta in a fully factorial microcosm experiment. We measured carbon dioxide (CO2) fluxes from these microcosms weekly. To help us identify how litter inputs influenced greenhouse gas fluxes, we sequenced soil fungal and bacterial communities, and measured soil microbial biomass carbon, dissolved carbon, inorganic nitrogen, and enzyme activity. We found that positive correlations between litter input quantity and CO2 flux were dependent upon litter type, due to differences in litter stoichiometry and changes to the structure of decomposer communities, especially the soil fungi. These community shifts were particularly pronounced when litter was added in the form of herbivore feces, and in litter input treatments that induced nitrogen limitation (i.e., senesced litter). The sensitivity of carbon cycling to litter quality and quantity in this system demonstrates that herbivores can strongly impact greenhouse gas fluxes through their influence on plant growth and tissue chemistry.more » « less
-
Abstract Global change drivers that modify the quality and quantity of litter inputs to soil affect greenhouse gas fluxes, and thereby constitute a feedback to climate change. Carbon cycling in the Yukon–Kuskokwim (Y–K) River Delta, a subarctic wetland system, is influenced by landscape variations in litter quality and quantity generated by herbivores (migratory birds) that create ‘grazing lawns’ of short stature, nitrogen-rich vegetation. To identify the mechanisms by which these changes in litter inputs affect soil carbon balance, we independently manipulated qualities and quantities of litter representative of levels found in the Y–K Delta in a fully factorial microcosm experiment. We measured CO2fluxes from these microcosms weekly. To help us identify how litter inputs influenced greenhouse gas fluxes, we sequenced soil fungal and bacterial communities, and measured soil microbial biomass carbon, dissolved carbon, inorganic nitrogen, and enzyme activity. We found that positive correlations between litter input quantity and CO2flux were dependent upon litter type, due to differences in litter stoichiometry and changes to the structure of decomposer communities, especially the soil fungi. These community shifts were particularly pronounced when litter was added in the form of herbivore feces, and in litter input treatments that induced nitrogen limitation (i.e., senesced litter). The sensitivity of carbon cycling to litter quality and quantity in this system demonstrates that herbivores can strongly impact greenhouse gas fluxes through their influence on plant growth and tissue chemistry. Graphical abstractmore » « less
An official website of the United States government

