Abstract Streamers play a key role in the formation and propagation of lightning channels. In nature streamers rarely appear alone. Their ensemble behavior is very complex and challenging to describe. For instance, the intricate dynamics within the streamer zone of negative lightning leaders give rise to space stems, which help advance the stepped-leader. Another example is how the increasing morphological complexity of sprites can lead to higher sprite current and greater energy deposition in the mesosphere. Insights into the complex dynamics of a streamer corona can be obtained from laboratory experiments that allow us to control the conditions of streamer formation. Based on simultaneous nanosecond-temporal-resolution photography, and measurements of voltage, current, and x-ray emissions, we report the characteristics of negative laboratory streamers in 88 kPa of atmosphere. The streamers are produced at peak voltages of 62.2 ± 3.8 kV in a point-to-plane discharge gap of 6 cm. While all discharges were driven to the same peak voltage, the discharges occurred at different stages of the relatively slow voltage rise (177 ns), allowing us to study discharge properties as a function of onset voltage. The onset voltage ranged between 24 and 67 kV, but x-ray emissions were observed to only occur above 53 kV, with x-ray burst energies scaling quadratically with voltage. The average delay between the current pulse and x-ray emission was found to be 3.5 ± 0.5 ns, indicating that runaway electrons are produced during the streamer inception phase or no later than the transition stage, when the inception cloud is breaking into streamer filaments. During this short time span, runaway electrons can traverse the gap, hit the ground plate and produce bremsstrahlung x-ray photons. However, streamers themselves cannot traverse more than 3.5 mm across the gap, which supports the idea that runaway electron production is not associated to streamer connection to the ground electrode. 
                        more » 
                        « less   
                    
                            
                            Conditions for Inception of Relativistic Runaway Discharges in Air
                        
                    
    
            Abstract Terrestrial gamma‐ray flashes are linked to growth of long bidirectional lightning leader system consisting of positive and stepping negative leaders. The spatial extent of streamer zones of a typical lightning leader with tip potential exceeding several tens of megavolts is on the order of 10–100 m. The photoelectric absorption of bremsstrahlung radiation generated by avalanching relativistic runaway electrons occurs efficiently on the same spatial scales. The intense multiplication of these electrons is triggered when the size of the negative leader streamer zone crosses a threshold of approximately 100 m (for sea‐level air pressure conditions) allowing self‐replication of these avalanches due to the upstream relativistic electron seeds generated by the photoelectric absorption. The model results also highlight importance of electrode effects in interpretation of X‐ray emissions from centimeter to meter long laboratory discharges, in particular, a similar feedback effect produced by generation of runaway electrons from the cathode material. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10404132
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 7
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In this paper we report the first close, high‐resolution observations of downward‐directed terrestrial gamma‐ray flashes (TGFs) detected by the large‐area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud‐to‐ground and low‐altitude intracloud flashes and that the IBPs are produced by a newly identified streamer‐based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark‐like transient conducting events (TCEs) within the fast streamer system and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub‐pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub‐pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely, as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP.more » « less
- 
            Abstract The production mechanism for terrestrial gamma ray flashes (TGFs) is not entirely understood, and details of the corresponding lightning activity and thunderstorm charge structure have yet to be fully characterized. Here we examine sub‐microsecond VHF (14–88 MHz) radio interferometer observations of a 247‐kA peak‐current EIP, or energetic in‐cloud pulse, a reliable radio signature of a subset of TGFs. The EIP consisted of three high‐amplitude sferic pulses lasting≃60μs in total, which peaked during the second (main) pulse. The EIP occurred during a normal‐polarity intracloud lightning flash that was highly unusual, in that the initial upward negative leader was particularly fast propagating and discharged a highly concentrated region of upper‐positive storm charge. The flash was initiated by a high‐power (46 kW) narrow bipolar event (NBE), and the EIP occurred about 3 ms later after≃3 km upward flash development. The EIP was preceded≃200μs by a fast6 × 106m/s upward negative breakdown and immediately preceded and accompanied by repeated sequences of fast (107–108m/s) downward then upward streamer events each lasting 10 to 20μs, which repeatedly discharged a large volume of positive charge. Although the repeated streamer sequences appeared to be a characteristic feature of the EIP and were presumably involved in initiating it, the EIP sferic evolved independently of VHF‐producing activity, supporting the idea that the sferic was produced by relativistic discharge currents. Moreover, the relativistic currents during the main sferic pulse initiated a strong NBE‐like event comparable in VHF power (115 kW) to the highest‐power NBEs.more » « less
- 
            Abstract We investigate sequential processes underlying the initial development of in‐cloud lightning flashes in the form of initial breakdown pulses (IBPs) between 7.4 and 9.0 km altitudes, using a 30–250 MHz VHF interferometer. When resolved, IBPs exhibit typical stepped leader features but are notably extensive (>500 m) and infrequent (∼1 millisecond intervals). Particularly, we observed four distinct phases within an IBP stepping cycle: the emergence of VHF sources forming edge structures at previous streamer zone edges (interpreted as space stem/leader development), the fast propagation of VHF along the edge structure (interpreted as the main leader connecting the space leader), the fast extension of VHF beyond the edge structure (interpreted as fast breakdown), and a decaying corona fan. These measurements illustrate clearly the processes involved in the initial development of in‐cloud lightning flashes, evidence the conducting main leader forming, and provide insights into other processes known to occur simultaneously, such as terrestrial gamma ray flashes.more » « less
- 
            Abstract Electric fields associated with a developing natural lightning leader are difficult to measure. This work demonstrates a new approach to indirectly probing the electric fields in the streamer zone of a lightning leader. Using a 10–250 MHz broadband lightning interferometer, very high frequency (VHF) radio emissions from the tip of a positive cloud‐to‐ground (CG) leader were measured and localized. We specially use a normalized spectral analysis to avoid the challenge of absolute system calibration to show that the positive leader spectrum exhibits a clear cutoff frequency at 80 MHz. Compared with theoretical predictions, this cutoff frequency corresponds to a streamer growth rate ofand an average electric field of 0.9 times the conventional breakdown fieldin streamer bursts from the positive leader. Implications for the detectability of positive leaders through VHF emissions and for the production of X‐rays by positive leaders are analyzed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
