skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observations of the Origin of Downward Terrestrial Gamma‐Ray Flashes
Abstract In this paper we report the first close, high‐resolution observations of downward‐directed terrestrial gamma‐ray flashes (TGFs) detected by the large‐area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud‐to‐ground and low‐altitude intracloud flashes and that the IBPs are produced by a newly identified streamer‐based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark‐like transient conducting events (TCEs) within the fast streamer system and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub‐pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub‐pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely, as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP.  more » « less
Award ID(s):
1720600 1844306
PAR ID:
10449255
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
23
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate sequential processes underlying the initial development of in‐cloud lightning flashes in the form of initial breakdown pulses (IBPs) between 7.4 and 9.0 km altitudes, using a 30–250 MHz VHF interferometer. When resolved, IBPs exhibit typical stepped leader features but are notably extensive (>500 m) and infrequent (∼1 millisecond intervals). Particularly, we observed four distinct phases within an IBP stepping cycle: the emergence of VHF sources forming edge structures at previous streamer zone edges (interpreted as space stem/leader development), the fast propagation of VHF along the edge structure (interpreted as the main leader connecting the space leader), the fast extension of VHF beyond the edge structure (interpreted as fast breakdown), and a decaying corona fan. These measurements illustrate clearly the processes involved in the initial development of in‐cloud lightning flashes, evidence the conducting main leader forming, and provide insights into other processes known to occur simultaneously, such as terrestrial gamma ray flashes. 
    more » « less
  2. Abstract Based on experimental results of recent years, this article presents a qualitative description of a possible mechanism (termed the Mechanism) covering the main stages of lightning initiation, starting before and including the initiating event, followed by the initial electric field change (IEC), followed by the first few initial breakdown pulses (IBPs). The Mechanism assumes initiation occurs in a region of ~1 km3with average electric fieldE > 0.3 MV/(m·atm), which contains, because of turbulence, numerous small “Ethvolumes” of ~10−4–10−3 m3withE ≥ 3 MV/(m·atm). The Mechanism allows for lightning initiation by either of two observed types of events: a high‐power, very high frequency (VHF) event such as a Narrow Bipolar Event or a weak VHF event. According to the Mechanism, both types of initiating events are caused by a group of relativistic runaway electron avalanche particles (where the initial electrons are secondary particles of an extensive air shower) passing through manyEthvolumes, thereby causing the nearly simultaneous launching of many positive streamer flashes. Due to ionization‐heating instability, unusual plasma formations (UPFs) appear along the streamers' trajectories. These UPFs combine into three‐dimensional (3‐D) networks of hot plasma channels during the IEC, resulting in its observed weak current flow. The subsequent development and combination of two (or more) of these 3‐D networks of hot plasma channels then causes the first IBP. Each subsequent IBP is caused when another 3‐D network of hot plasma channels combines with the chain of networks caused by earlier IBPs. 
    more » « less
  3. Abstract The production mechanism for terrestrial gamma ray flashes (TGFs) is not entirely understood, and details of the corresponding lightning activity and thunderstorm charge structure have yet to be fully characterized. Here we examine sub‐microsecond VHF (14–88 MHz) radio interferometer observations of a 247‐kA peak‐current EIP, or energetic in‐cloud pulse, a reliable radio signature of a subset of TGFs. The EIP consisted of three high‐amplitude sferic pulses lasting≃60μs in total, which peaked during the second (main) pulse. The EIP occurred during a normal‐polarity intracloud lightning flash that was highly unusual, in that the initial upward negative leader was particularly fast propagating and discharged a highly concentrated region of upper‐positive storm charge. The flash was initiated by a high‐power (46 kW) narrow bipolar event (NBE), and the EIP occurred about 3 ms later after≃3 km upward flash development. The EIP was preceded≃200μs by a fast6 × 106m/s upward negative breakdown and immediately preceded and accompanied by repeated sequences of fast (107–108m/s) downward then upward streamer events each lasting 10 to 20μs, which repeatedly discharged a large volume of positive charge. Although the repeated streamer sequences appeared to be a characteristic feature of the EIP and were presumably involved in initiating it, the EIP sferic evolved independently of VHF‐producing activity, supporting the idea that the sferic was produced by relativistic discharge currents. Moreover, the relativistic currents during the main sferic pulse initiated a strong NBE‐like event comparable in VHF power (115 kW) to the highest‐power NBEs. 
    more » « less
  4. Abstract On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production. 
    more » « less
  5. Abstract Terrestrial Gamma-ray Flashes (TGFs) are intense bursts of gamma rays originating from the Earth’s atmosphere, primarily produced by lightning flashes through relativistic runaway electron avalanches. Observations from the Telescope Array in Utah, equipped with a variety of lightning detection instruments, have revealed detailed insights into TGF initiation and propagation, including their optical emissions. High-speed video cameras and spectroscopic systems have captured optical emissions linked to TGFs, revealing key insights into their initiation and propagation. These findings enhance our understanding of the complex processes underlying TGFs and lightning flashes during thunderstorms. 
    more » « less