Construction project management requires frequent inspections to ensure the quality and progress of the construction work. Multiple stakeholders are involved in the inspection process during the project lifecycle. Some project stakeholders, such as architects, owners, structural engineers are involved with multiple construction projects at a time and are responsible to conduct timely inspection and monitoring tasks. This paper studies the potential of Virtual Reality (VR) and robotics for real-time remote inspection. The benefits and challenges of using VR for construction inspection and monitoring were identified and ranked through a systematic literature review. The top 5 benefits were found to be enhanced collaboration, realistic and immersive visualization, remote presence, reduction in inspection time, and support for decision-making. The top 5 challenges identified in this study include low- resolution displays, limited integration with existing technologies (such as BIM), causing disorientation and dizziness for the user, cost of adoption, and job site internet access limitations. Finally, a new approach was investigated for using VR to enable an immersive experience in remote inspection with an inspector assistant robot for real-time remote construction inspection. The experimental investigation verified the identified benefits and challenges.
more »
« less
Construction inspection & monitoring with quadruped robots in future human-robot teaming: A preliminary study
Construction inspection and monitoring are key activities in construction projects. Automation of inspection tasks can address existing limitations and inefficiencies of the manual process to enable systematic and consistent construction inspection. However, there is a lack of an in-depth understanding of the process of construction inspection and monitoring and the tasks and sequences involved to provide the basis for task delegation in a human-technology partnership. The purpose of this research is to study the conventional process of inspection and monitoring of construction work currently implemented in construction projects and to develop an alternative process using a quadruped robot as an inspector assistant to overcome the limitations of the conventional process. This paper explores the use of quadruped robots for construction inspection and monitoring with an emphasis on a human-robot teaming approach. Technical development and testing of the robotic technology are not in the scope of this study. The results indicate how inspector assistant quadruped robots can enable a human-technology partnership in future construction inspection and monitoring tasks. The research was conducted through on-site experiments and observations of inspectors during construction inspection and monitoring followed by a semi-structured interview to develop a process map of the conventional construction inspection and monitoring process. The study also includes on-site robot training and experiments with the inspectors to develop an alternative process map to depict future construction inspection and monitoring work with the use of an inspector assistant quadruped robot. Both the conventional and alternative process maps were validated through interview surveys with industry experts against four criteria including, completeness, accuracy, generalizability, and comprehensibility. The findings suggest that the developed process maps reflect existing and future construction inspection and monitoring work.
more »
« less
- Award ID(s):
- 2128948
- PAR ID:
- 10404184
- Date Published:
- Journal Name:
- Journal of building engineering
- Volume:
- 65
- ISSN:
- 2352-7102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Regular inspection and monitoring of buildings and infrastructure, that is collectively called the built environment in this paper, is critical. The built environment includes commercial and residential buildings, roads, bridges, tunnels, and pipelines. Automation and robotics can aid in reducing errors and increasing the efficiency of inspection tasks. As a result, robotic inspection and monitoring of the built environment has become a significant research topic in recent years. This review paper presents an in-depth qualitative content analysis of 269 papers on the use of robots for the inspection and monitoring of buildings and infrastructure. The review found nine different types of robotic systems, with unmanned aerial vehicles (UAVs) being the most common, followed by unmanned ground vehicles (UGVs). The study also found five different applications of robots in inspection and monitoring, namely, maintenance inspection, construction quality inspection, construction progress monitoring, as-built modeling, and safety inspection. Common research areas investigated by researchers include autonomous navigation, knowledge extraction, motion control systems, sensing, multi-robot collaboration, safety implications, and data transmission. The findings of this study provide insight into the recent research and developments in the field of robotic inspection and monitoring of the built environment and will benefit researchers, and construction and facility managers, in developing and implementing new robotic solutions.more » « less
-
Abstract Research in quadrupedal robotics is transitioning to studies into loco-manipulation, featuring fully articulated robotic arms mounted atop these robots. Integrating such arms enhances the practical utility of legged robots, paving the way for expanded applications like industrial inspection and search and rescue. Existing literature commonly employs a six-degree-of-freedom (six-DoF) arm directly mounted to the robot, which inherently adds significant weight and reduces the available payload for manipulation tasks. Our study explores an optimized combination of arm configuration and control framework by strategically reducing the DoFs and leveraging the quadruped robot’s inherent agile mobility. We demonstrate that by minimizing the DoFs to just one, a range of canonical loco-manipulation tasks can still be accomplished. Some tasks even show improved performance with fewer robotic arm DoFs due to the higher torque motor used in the design, allowing more of the robot’s payload to be used for manipulation. We designed our optimized one-DoF robotic arm and the control framework and tested it on top of a Unitree Aliengo. Our design outperforms conventional six-DoF counterparts in lifting capacity, achieving an impressive 8 kg payload compared to the 2 kg maximum payload of industry-standard six-DoF robotic arms on the same quadruped platform.more » « less
-
While semi‐autonomous drones are increasingly used for road infrastructure inspection, their insufficient ability to independently handle complex scenarios beyond initial job planning hinders their full potential. To address this, the paper proposes a human–drone collaborative inspection approach leveraging flexible surface electromyography (sEMG) for conveying inspectors' speech guidance to intelligent drones. Specifically, this paper contributes a new data set,sEMGCommands forPilotingDrones (sCPD), and ansEMG‐basedCross‐subjectClassificationNetwork (sXCNet), for both command keyword recognition and inspector identification. sXCNet acquires the desired functions and performance through a synergetic effort of sEMG signal processing, spatial‐temporal‐frequency deep feature extraction, and multitasking‐enabled cross‐subject representation learning. The cross‐subject design permits deploying one unified model across all authorized inspectors, eliminating the need for subject‐dependent models tailored to individual users. sXCNet achieves notable classification accuracies of 98.1% on the sCPD data set and 86.1% on the public Ninapro db1 data set, demonstrating strong potential for advancing sEMG‐enabled human–drone collaboration in road infrastructure inspection.more » « less
-
Chang, Fu-Kuo; Guemes, Alfredo (Ed.)This paper addresses the problem of monitoring structures with potential emergent damage through adaptive sensing provided by teams of mobile robots. Advantages of mobile robot teams for structural health monitoring include: 1. Multiple views of a given structure, 2. Adaptive movements that focus attention in response to observed conditions,3. Heterogeneous sensing and movement, and 4. Federated health monitoring and prognosis assessment through networked sharing and processing of information. Towards this end three cases of the use of mobile robot teams will be presented: 1. Heterogeneous robot teams for home and small building maintenance – Identifying, diagnosing and mitigating damage to homes and small buildings is a vexing set of problems for the owners. As an aid small controlled bristlebots and quadruped robot dogs (QRDs) carry sensors throughout a small building, assess conditions, provide prognoses and networked links to repair options; 2. Culverts are primary components of stormwater and flood prevention infrastructure. Inspecting small culverts is difficult for humans and large culverts are accessible but dangerous due to issues of confined spaces. Low-cost mobile robots have emerged as a competitive inspection option for accessible culverts with straight or short runs that permit wireless telemetry. Longer culverts and those with bends, branches and drop inlets pose challenges to the telemetry. Teams of robots extend the range of inspection through multi-hop video and control telemetry; 3. Ground penetrating radar (GPR) is a method of sensing subsurface infrastructure conditions with high-frequency electromagnetic waves. Conventional GPRs operate in a suboptimal monostatic or bistatic mode, are tedious to operate and have limitations in sensing congested utility subsurface conditions. Coordinated multistatic ground penetrating radar operated with mobile robot teams alleviates some of these concerns and provide better subsurface assessments with automated methods that focus attention on subsurface features of interest. Results from laboratory and field tests of these robot teams, as well as organizing principles of control and automated information processing are presented.more » « less
An official website of the United States government

