skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distance Estimation with Social Distancing: A Mobile Augmented Reality Study
Although Augmented Reality (AR) can be easily implemented with most smartphones and tablets today, the investigation of distance perception with these types of devices has been limited. In this paper, we question whether the distance of a virtual human, e.g., avatar, seen through a smartphone or tablet display is perceived accurately. We also investigate, due to the Covid-19 pandemic and increased sensitivity to distances to others, whether a coughing avatar that either does or does not have a mask on affects distance estimates compared to a static avatar. We performed an experiment in which all participants estimated the distances to avatars that were either static or coughing, with and without masks on. Avatars were placed at a range of distances that would be typical for interaction, i.e., action space. Data on judgments of distance to the varying avatars was collected in a distributed manner by deploying an app for smartphones. Results showed that participants were fairly accurate in estimating the distance to all avatars, regardless of coughing condition or mask condition. Such findings suggest that mobile AR applications can be used to obtain accurate estimations of distances to virtual others "in the wild," which is promising for using AR for simulations and training applications that require precise distance estimates.  more » « less
Award ID(s):
1763966
PAR ID:
10404232
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE Workshop on Perceptual and Cognitive Issues in xR (PERCxR)
Page Range / eLocation ID:
87 to 91
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Display technologies in the fields of virtual and augmented reality affect the appearance of human representations, such as avatars used in telepresence or entertainment applications, based on the user’s current viewing conditions. With changing viewing conditions, it is possible that the perceived appearance of one’s avatar changes in an unexpected or undesired manner, which may change user behavior towards these avatars and cause frustration in using the AR display. In this paper, we describe a user study (N=20) where participants saw themselves in a mirror standing next to their own avatar through use of a HoloLens 2 optical see-through head-mounted display. Participants were tasked to match their avatar’s appearance to their own under two environment lighting conditions (200 lux and 2,000 lux). Our results showed that the intensity of environment lighting had a significant effect on participants selected skin colors for their avatars, where participants with dark skin colors tended to make their avatar’s skin color lighter, nearly to the level of participants with light skin color. Further, in particular female participants made their avatar’s hair color darker for the lighter environment lighting condition. We discuss our results with a view on technological limitations and effects on the diversity of avatar representations on optical see-through displays. 
    more » « less
  2. The present and future transition of lives and activities into virtual worlds --- worlds in which people interact using avatars --- creates novel privacy challenges and opportunities. Avatars present an opportunity for people to control the way they are represented to other users and the information shared or implied by that representation. Importantly, users with marginalized identities may have a unique set of concerns when choosing what information about themselves (and their identities) to conceal or expose in an avatar. We present a theoretical basis, supported by two empirical studies, to understand how marginalization impacts the ways in which people create avatars and perceive others' avatars: what information do people choose to reveal or conceal, and how do others react to these choices? In Study 1, participants from historically marginalized backgrounds felt more concerned about being devalued based on their identities in virtual worlds, which related to a lower desire to reveal their identities in an avatar, compared to non-marginalized participants. However, in Study 2 participants were often uncomfortable with others changing visible characteristics in an avatar, weighing concerns about others' anonymity with possible threats to their own safety and security online. Our findings demonstrate asymmetries in what information people prefer the self vs. others to reveal in their online representations: participants want privacy for themselves but to feel informed about others. Although avatars allow people to choose what information to reveal about themselves, people from marginalized backgrounds may still face backlash for concealing components of their identities to avoid harm. 
    more » « less
  3. The use of virtual humans (i.e., avatars) holds the potential for interactive, automated interaction in domains such as remote communication, customer service, or public announcements. For signed language users, signing avatars could potentially provide accessible content by sharing information in the signer's preferred or native language. As the development of signing avatars has gained traction in recent years, researchers have come up with many different methods of creating signing avatars. The resulting avatars vary widely in their appearance, the naturalness of their movements, and facial expressions—all of which may potentially impact users' acceptance of the avatars. We designed a study to test the effects of these intrinsic properties of different signing avatars while also examining the extent to which people's own language experiences change their responses to signing avatars. We created video stimuli showing individual signs produced by (1) a live human signer (Human), (2) an avatar made using computer-synthesized animation (CS Avatar), and (3) an avatar made using high-fidelity motion capture (Mocap avatar). We surveyed 191 American Sign Language users, including Deaf ( N = 83), Hard-of-Hearing ( N = 34), and Hearing ( N = 67) groups. Participants rated the three signers on multiple dimensions, which were then combined to form ratings of Attitudes, Impressions, Comprehension, and Naturalness. Analyses demonstrated that the Mocap avatar was rated significantly more positively than the CS avatar on all primary variables. Correlations revealed that signers who acquire sign language later in life are more accepting of and likely to have positive impressions of signing avatars. Finally, those who learned ASL earlier were more likely to give lower, more negative ratings to the CS avatar, but we did not see this association for the Mocap avatar or the Human signer. Together, these findings suggest that movement quality and appearance significantly impact users' ratings of signing avatars and show that signed language users with earlier age of ASL acquisition are the most sensitive to movement quality issues seen in computer-generated avatars. We suggest that future efforts to develop signing avatars consider retaining the fluid movement qualities integral to signed languages. 
    more » « less
  4. Photorealistic avatars have become essential for immersive applications in virtual reality (VR) and augmented reality (AR), enabling lifelike interactions in areas such as training simulations, telemedicine, and virtual collaboration. These avatars bridge the gap between the physical and digital worlds, improving the user experience through realistic human representation. However, existing avatar creation techniques face significant challenges, including high costs, long creation times, and limited utility in virtual applications. Manual methods, such as MetaHuman, require extensive time and expertise, while automatic approaches, such as NeRF-based pipelines often lack efficiency, detailed facial expression fidelity, and are unable to be rendered at a speed sufficent for real-time applications. By involving several cutting-edge modern techniques, we introduce an end-to-end 3D Gaussian Splatting (3DGS) avatar creation pipeline that leverages monocular video input to create a scalable and efficient photorealistic avatar directly compatible with the Unity game engine. Our pipeline incorporates a novel Gaussian splatting technique with customized preprocessing that enables the user of ”in the wild” monocular video capture, detailed facial expression reconstruction and embedding within a fully rigged avatar model. Additionally, we present a Unity-integrated Gaussian Splatting Avatar Editor, offering a user-friendly environment for VR/AR application development. Experimental results validate the effectiveness of our preprocessing pipeline in standardizing custom data for 3DGS training and demonstrate the versatility of Gaussian avatars in Unity, highlighting the scalability and practicality of our approach. 
    more » « less
  5. Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues. 
    more » « less