skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved Bi-Point Rounding Algorithms and a Golden Barrier for k-median
The current-best approximation algorithms for k-median rely on first obtaining a structured fractional solution known as a bi-point solution, and then rounding it to an integer solution. We improve this second step by unifying and refining previous approaches. We describe a hierarchy of increasingly-complex partitioning schemes for the facilities, along with corresponding sets of algorithms and factor-revealing non-linear programs. We prove that the third layer of this hierarchy is a 2.613-approximation, improving upon the current-best ratio of 2.675, while no layer can be proved better than 2.588 under the proposed analysis. On the negative side, we give a family of bi-point solutions which cannot be approximated better than the square root of the golden ratio, even if allowed to open k + o(k) facilities. This gives a barrier to current approaches for obtaining an approximation better than approximately 2.544. Altogether we reduce the approximation gap of bi-point solutions by two thirds.  more » « less
Award ID(s):
1918749
PAR ID:
10404310
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA)
Page Range / eLocation ID:
987-1011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Leroux, Jérôme; Lombardy, Sylvain; Peleg, David (Ed.)
    Feedback Vertex Set (FVS) is one of the most studied vertex deletion problems in the field of graph algorithms. In the decision version of the problem, given a graph G and an integer k, the question is whether there exists a set S of at most k vertices in G such that G-S is acyclic. It is one of the first few problems which were shown to be NP-complete, and has been extensively studied from the viewpoint of approximation and parameterized algorithms. The best-known polynomial time approximation algorithm for FVS is a 2-factor approximation, while the best known deterministic and randomized FPT algorithms run in time 𝒪^*(3.460^k) and 𝒪^*(2.7^k) respectively. In this paper, we contribute to the newly established area of parameterized approximation, by studying FVS in this paradigm. In particular, we combine the approaches of parameterized and approximation algorithms for the study of FVS, and achieve an approximation guarantee with a factor better than 2 in randomized FPT running time, that improves over the best known parameterized algorithm for FVS. We give three simple randomized (1+ε) approximation algorithms for FVS, running in times 𝒪^*(2^{εk}⋅ 2.7^{(1-ε)k}), 𝒪^*(({(4/(1+ε))^{(1+ε)}}⋅{(ε/3)^ε})^k), and 𝒪^*(4^{(1-ε)k}) respectively for every ε ∈ (0,1). Combining these three algorithms, we obtain a factor (1+ε) approximation algorithm for FVS, which has better running time than the best-known (randomized) FPT algorithm for every ε ∈ (0, 1). This is the first attempt to look at a parameterized approximation of FVS to the best of our knowledge. Our algorithms are very simple, and they rely on some well-known reduction rules used for arriving at FPT algorithms for FVS. 
    more » « less
  2. There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diverse c-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial ti 
    more » « less
  3. There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diversec-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial time. 
    more » « less
  4. We consider the following general network design problem on directed graphs. The input is an asymmetric metric (V, c), root r in V, monotone submodular function f and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a very simple quasi-polynomial time -approximation algorithm for this problem, where k ≤ |V| is the number of vertices in an optimal solution. To the best of our knowledge, this is the first non-trivial approximation ratio for this problem. As a consequence we obtain an O(log^2 k / loglog k) approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio, but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first non-trivial approximation ratio. Under certain complexity assumptions, our approximation ratios are best possible (up to constant factors). 
    more » « less
  5. Given a k-CNF formula and an integer s, we study algorithms that obtain s solutions to the formula that are maximally dispersed. For s=2, the problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k=2. Assuming SETH, the current best upper bound [Angelsmark and Thapper '04] goes to 4n as k→∞. As our first result, we give exact algorithms for using the Fast Fourier Transform and clique-finding that run in O(2^((s−1)n)) and O(s^2|Ω_F|^(ω⌈s/3⌉)) respectively, where |Ω_F| is the size of the solution space of the formula F and ω is the matrix multiplication exponent. As our main result, we re-analyze the popular PPZ (Paturi, Pudlak, Zane '97) and Schöning's ('02) algorithms (which find one solution in time O∗(2^(ε_k n)) for εk≈1−Θ(1/k)), and show that in the same time, they can be used to approximate the diameter as well as the dispersion (s>2) problems. While we need to modify Schöning's original algorithm, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe that this property may be of independent interest. Finally, we present algorithms to output approximately diverse, approximately optimal solutions to NP-complete optimization problems running in time poly(s)O(^(2εn)) with ε<1 for several problems such as Minimum Hitting Set and Feedback Vertex Set. For these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods find bi-approximations with polynomial dependence on s. 
    more » « less