There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diverse c-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial ti
more »
« less
Obtaining Approximately Optimal and Diverse Solutions via Dispersion
There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diversec-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial time.
more »
« less
- Award ID(s):
- 1910873
- PAR ID:
- 10466733
- Publisher / Repository:
- Latin American Symposium on Theoretical Informatics
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given a k-CNF formula and an integer s, we study algorithms that obtain s solutions to the formula that are maximally dispersed. For s=2, the problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k=2. Assuming SETH, the current best upper bound [Angelsmark and Thapper '04] goes to 4n as k→∞. As our first result, we give exact algorithms for using the Fast Fourier Transform and clique-finding that run in O(2^((s−1)n)) and O(s^2|Ω_F|^(ω⌈s/3⌉)) respectively, where |Ω_F| is the size of the solution space of the formula F and ω is the matrix multiplication exponent. As our main result, we re-analyze the popular PPZ (Paturi, Pudlak, Zane '97) and Schöning's ('02) algorithms (which find one solution in time O∗(2^(ε_k n)) for εk≈1−Θ(1/k)), and show that in the same time, they can be used to approximate the diameter as well as the dispersion (s>2) problems. While we need to modify Schöning's original algorithm, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe that this property may be of independent interest. Finally, we present algorithms to output approximately diverse, approximately optimal solutions to NP-complete optimization problems running in time poly(s)O(^(2εn)) with ε<1 for several problems such as Minimum Hitting Set and Feedback Vertex Set. For these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods find bi-approximations with polynomial dependence on s.more » « less
-
We develop a general framework, called approximately-diverse dynamic programming (ADDP) that can be used to generate a collection of k≥2 maximally diverse solutions to various geometric and combinatorial optimization problems. Given an approximation factor 0≤c≤1, this framework also allows for maximizing diversity in the larger space of c-approximate solutions. We focus on two geometric problems to showcase this technique: 1. Given a polygon P, an integer k≥2 and a value c≤1, generate k maximally diverse c-nice triangulations of P. Here, a c-nice triangulation is one that is c-approximately optimal with respect to a given quality measure σ. 2. Given a planar graph G, an integer k≥2 and a value c≤1, generate k maximally diverse c-optimal Independent Sets (or, Vertex Covers). Here, an independent set S is said to be c-optimal if |S|≥c|S′| for any independent set S′ of G. Given a set of k solutions to the above problems, the diversity measure we focus on is the average distance between the solutions, where d(X,Y)=|XΔY|. For arbitrary polygons and a wide range of quality measures, we give poly(n,k) time (1−Θ(1/k))-approximation algorithms for the diverse triangulation problem. For the diverse independent set and vertex cover problems on planar graphs, we give an algorithm that runs in time 2^(O(k.δ^(−1).ϵ^(−2)).n^O(1/ϵ) and returns (1−ϵ)-approximately diverse (1−δ)c-optimal independent sets or vertex covers. Our triangulation results are the first algorithmic results on computing collections of diverse geometric objects, and our planar graph results are the first PTAS for the diverse versions of any NP-complete problem. Additionally, we also provide applications of this technique to diverse variants of other geometric problems.more » « less
-
null (Ed.)We investigate the approximability of the following optimization problem. The input is an n× n matrix A=(Aij) with real entries and an origin-symmetric convex body K⊂ ℝn that is given by a membership oracle. The task is to compute (or approximate) the maximum of the quadratic form ∑i=1n∑j=1n Aij xixj=⟨ x,Ax⟩ as x ranges over K. This is a rich and expressive family of optimization problems; for different choices of matrices A and convex bodies K it includes a diverse range of optimization problems like max-cut, Grothendieck/non-commutative Grothendieck inequalities, small set expansion and more. While the literature studied these special cases using case-specific reasoning, here we develop a general methodology for treatment of the approximability and inapproximability aspects of these questions. The underlying geometry of K plays a critical role; we show under commonly used complexity assumptions that polytime constant-approximability necessitates that K has type-2 constant that grows slowly with n. However, we show that even when the type-2 constant is bounded, this problem sometimes exhibits strong hardness of approximation. Thus, even within the realm of type-2 bodies, the approximability landscape is nuanced and subtle. However, the link that we establish between optimization and geometry of Banach spaces allows us to devise a generic algorithmic approach to the above problem. We associate to each convex body a new (higher dimensional) auxiliary set that is not convex, but is approximately convex when K has a bounded type-2 constant. If our auxiliary set has an approximate separation oracle, then we design an approximation algorithm for the original quadratic optimization problem, using an approximate version of the ellipsoid method. Even though our hardness result implies that such an oracle does not exist in general, this new question can be solved in specific cases of interest by implementing a range of classical tools from functional analysis, most notably the deep factorization theory of linear operators. Beyond encompassing the scenarios in the literature for which constant-factor approximation algorithms were found, our generic framework implies that that for convex sets with bounded type-2 constant, constant factor approximability is preserved under the following basic operations: (a) Subspaces, (b) Quotients, (c) Minkowski Sums, (d) Complex Interpolation. This yields a rich family of new examples where constant factor approximations are possible, which were beyond the reach of previous methods. We also show (under commonly used complexity assumptions) that for symmetric norms and unitarily invariant matrix norms the type-2 constant nearly characterizes the approximability of quadratic maximization.more » « less
-
Optimization problems are ubiquitous in our societies and are present in almost every segment of the economy. Most of these optimization problems are NP-hard and computationally demanding, often requiring approximate solutions for large-scale instances. Machine learning frameworks that learn to approximate solutions to such hard optimization problems are a potentially promising avenue to address these difficulties, particularly when many closely related problem instances must be solved repeatedly. Supervised learning frameworks can train a model using the outputs of pre-solved instances. However, when the outputs are themselves approximations, when the optimization problem has symmetric solutions, and/or when the solver uses randomization, solutions to closely related instances may exhibit large differences and the learning task can become inherently more difficult. This paper demonstrates this critical challenge, connects the volatility of the training data to the ability of a model to approximate it, and proposes a method for producing (exact or approximate) solutions to optimization problems that are more amenable to supervised learning tasks. The effectiveness of the method is tested on hard non-linear nonconvex and discrete combinatorial problems.more » « less
An official website of the United States government
