skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Area, environmental heterogeneity, scale and the conservation of alpine diversity
Abstract AimArea and environmental heterogeneity together explain most patterns of species diversity but disentangling their relative importance has been difficult. Here, we empirically examined this relationship and parsed their relative importance, and that of the heterogeneity—effective area trade‐off, at different spatial scales and in different spatial representations in simulations. LocationAlpine grasslands of 23 mountain ranges of southern and central Europe. TaxonVascular plants. MethodsWe developed metrics of climatic and edaphic heterogeneity, using principal components analyses and the shoelace algorithm, and added elevation range. We applied commonality analysis to partition the unique and shared explanation of the observed vascular plant species richness among selected metrics. A simulation was developed to separate the relative importance of area and heterogeneity at different extents and representations of spatial nestedness, and the heterogeneity—effective area trade‐off was evaluated by altering spatial discreteness. ResultsThe explanation of the observed regional richness was shared by area and heterogeneity. The simulation revealed that heterogeneity was consistently more important, but less so among smaller areas. This qualitative pattern was maintained regardless of whether and how nestedness was represented. The heterogeneity–effective area trade‐off occurred in a few simulations of more discrete habitats. Main ConclusionsScale dependence may account for discrepancies among past empirical studies wherein environmental heterogeneity has usually outweighed area in the explanation of species richness; and it is not affected by nestedness. The potential heterogeneity–effective area trade‐off may be limited to locations where the environmental heterogeneity is quite discrete or if the added environment is beyond the niches of any species in the potential pool. The significant importance of area per se in small territories indicates that microrefugia, even with an unlikely full range of heterogeneity, will suffer local extinctions in the face of climate change.  more » « less
Award ID(s):
1853665
PAR ID:
10404345
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Biogeography
Volume:
50
Issue:
4
ISSN:
0305-0270
Page Range / eLocation ID:
p. 743-754
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimAlpine ecosystems differ in area, macroenvironment and biogeographical history across the Earth, but the relationship between these factors and plant species richness is still unexplored. Here, we assess the global patterns of plant species richness in alpine ecosystems and their association with environmental, geographical and historical factors at regional and community scales. LocationGlobal. Time periodData collected between 1923 and 2019. Major taxa studiedVascular plants. MethodsWe used a dataset representative of global alpine vegetation, consisting of 8,928 plots sampled within 26 ecoregions and six biogeographical realms, to estimate regional richness using sample‐based rarefaction and extrapolation. Then, we evaluated latitudinal patterns of regional and community richness with generalized additive models. Using environmental, geographical and historical predictors from global raster layers, we modelled regional and community richness in a mixed‐effect modelling framework. ResultsThe latitudinal pattern of regional richness peaked around the equator and at mid‐latitudes, in response to current and past alpine area, isolation and the variation in soil pH among regions. At the community level, species richness peaked at mid‐latitudes of the Northern Hemisphere, despite a considerable within‐region variation. Community richness was related to macroclimate and historical predictors, with strong effects of other spatially structured factors. Main conclusionsIn contrast to the well‐known latitudinal diversity gradient, the alpine plant species richness of some temperate regions in Eurasia was comparable to that of hyperdiverse tropical ecosystems, such as the páramo. The species richness of these putative hotspot regions is explained mainly by the extent of alpine area and their glacial history, whereas community richness depends on local environmental factors. Our results highlight hotspots of species richness at mid‐latitudes, indicating that the diversity of alpine plants is linked to regional idiosyncrasies and to the historical prevalence of alpine ecosystems, rather than current macroclimatic gradients. 
    more » « less
  2. ABSTRACT AimThe goals of this study were to (1) identify how climate change impacts the distribution of amphibian species and high‐priority conservation areas (HPCA) in the drylands of the Southwest United States and Northern Mexico, (2) describe the relationship between environmental variables and spatial configurations of HPCA and (3) explore how climate change will impact the distribution of HPCA and investigate the relationship between HPCA and protected area (PA) network. LocationSouthwest United States and Northern Mexico. TaxonAmphibians. MethodsWe used distribution maps for 209 amphibian species to estimate surrogates of amphibian diversity, assessed by rarity‐weighted richness (RWR), site importance (Zonation) and species richness. Then, we used species accumulation curves to assess their efficiency in representing amphibians in the least number of sites. Next, we used the most effective surrogate to identify HPCA for amphibians. We used environmental variables, usually related to amphibian distribution, and random forest models to assess the impact of climate on the spatial configuration of HPCA in the current and future times. We also used PA networks to assess their representation. ResultsRWR produced a similar spatial configuration of HPCA as Zonation but could not depict the same level of connectivity. HPCAs were observed mainly across California, central Texas and western Mexico. The spatial distribution of HPCA was mostly influenced by precipitation, temperature and solar radiation. Climate change will influence the future distribution of HPCA. The overlay between HPCA and PA is weak. Main ConclusionClimate change is becoming an ever‐increasing issue for conservation efforts, especially in dryland ecosystems where natural resources are already scarce for native species. Results show an alteration in the spatial configuration of amphibian HPCA, and much is still needed to protect and manage them. 
    more » « less
  3. Abstract Human activities are altering ecological communities around the globe. Understanding the implications of these changes requires that we consider the composition of those communities. However, composition can be summarized by many metrics which in turn are influenced by different ecological processes. For example, incidence‐based metrics strongly reflect species gains or losses, while abundance‐based metrics are minimally affected by changes in the abundance of small or uncommon species. Furthermore, metrics might be correlated with different predictors. We used a globally distributed experiment to examine variation in species composition within 60 grasslands on six continents. Each site had an identical experimental and sampling design: 24 plots × 4 years. We expressed compositional variation within each site—not across sites—using abundance‐ and incidence‐based metrics of the magnitude of dissimilarity (Bray–Curtis and Sorensen, respectively), abundance‐ and incidence‐based measures of the relative importance of replacement (balanced variation and species turnover, respectively), and species richness at two scales (per plot‐year [alpha] and per site [gamma]). Average compositional variation among all plot‐years at a site was high and similar to spatial variation among plots in the pretreatment year, but lower among years in untreated plots. For both types of metrics, most variation was due to replacement rather than nestedness. Differences among sites in overall within‐site compositional variation were related to several predictors. Environmental heterogeneity (expressed as the CV of total aboveground plant biomass in unfertilized plots of the site) was an important predictor for most metrics. Biomass production was a predictor of species turnover and of alpha diversity but not of other metrics. Continentality (measured as annual temperature range) was a strong predictor of Sorensen dissimilarity. Metrics of compositional variation are moderately correlated: knowing the magnitude of dissimilarity at a site provides little insight into whether the variation is driven by replacement processes. Overall, our understanding of compositional variation at a site is enhanced by considering multiple metrics simultaneously. Monitoring programs that explicitly incorporate these implications, both when designing sampling strategies and analyzing data, will have a stronger ability to understand the compositional variation of systems and to quantify the impacts of human activities. 
    more » « less
  4. Abstract Understanding environmental drivers of species diversity has become increasingly important under climate change. Different trophic groups (predators, omnivores and herbivores) interact with their environments in fundamentally different ways and may therefore be influenced by different environmental drivers. Using random forest models, we identified drivers of terrestrial mammals' total and proportional species richness within trophic groups at a global scale. Precipitation seasonality was the most important predictor of richness for all trophic groups. Richness peaked at intermediate precipitation seasonality, indicating that moderate levels of environmental heterogeneity promote mammal richness. Gross primary production (GPP) was the most important correlate of the relative contribution of each trophic group to total species richness. The strong relationship with GPP demonstrates that basal‐level resource availability influences how diversity is structured among trophic groups. Our findings suggest that environmental characteristics that influence resource temporal variability and abundance are important predictors of terrestrial mammal richness at a global scale. 
    more » « less
  5. Abstract All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade‐offs constrain the range of viable life‐history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade‐offs as they have a high diversity of coexisting tree species whose life‐history strategies tend to align along two orthogonal axes of variation: a growth–survival trade‐off that separates species with fast growth from species with high survival and a stature–recruitment trade‐off that separates species that achieve large stature from species with high recruitment. As these trade‐offs have typically been explored for trees ≥1 cm dbh, it is unclear how species' growth and survival during earliest seedling stages are related to the trade‐offs for trees ≥1 cm dbh. Here, we used principal components and correlation analyses to (1) determine the main demographic trade‐offs among seed‐to‐seedling transition rates and growth and survival rates from the seedling to overstory size classes of 1188 tree species from large‐scale forest dynamics plots in Panama, Puerto Rico, Ecuador, Taiwan, and Malaysia and (2) quantify the predictive power of maximum dbh, wood density, seed mass, and specific leaf area for species' position along these demographic trade‐off gradients. In four out of five forests, the growth–survival trade‐off was the most important demographic trade‐off and encompassed growth and survival of both seedlings and trees ≥1 cm dbh. The second most important trade‐off separated species with relatively fast growth and high survival at the seedling stage from species with relatively fast growth and high survival ≥1 cm dbh. The relationship between seed‐to‐seedling transition rates and these two trade‐off aces differed between sites. All four traits were significant predictors for species' position along the two trade‐off gradients, albeit with varying importance. We concluded that, after accounting for the species' position along the growth–survival trade‐off, tree species tend to trade off growth and survival at the seedling with later life stages. This ontogenetic trade‐off offers a mechanistic explanation for the stature–recruitment trade‐off that constitutes an additional ontogenetic dimension of life‐history variation in species‐rich ecosystems. 
    more » « less