ABSTRACT AimStudies assessing large‐scale patterns of microbial diversity have predominantly focused on free‐living microorganisms, often failing to link observed patterns to established theories regarding the maintenance of global diversity patterns. We aimed to determine whether foliar fungi on two closely related grass hosts—Heteropogon contortusandThemeda triandra—display a commonly observed latitudinal gradient in species richness and determine whether host identity, energy (temperature and precipitation), climate seasonality, fire frequency and grass evolutionary history drive the observed patterns in species richness and composition. LocationPaleotropical. Time PeriodContemporary. Major Taxa StudiedFoliar fungi. MethodsFoliar fungal diversity was quantified from 201 leaf samples ofT. triandraandH. contortuscollected across the distributional range of these species. Mixed effects models were used to quantify patterns of diversity and their correlates among and within continents. Ordinations were used to assess drivers of composition. ResultsFoliar fungi displayed consistent latitudinal diversity gradients in richness. Energy was a strong driver of richness at inter‐continental and continental scales, while other factors had inconsistent impacts on richness among scales, hosts and guilds. Globally, richness was higher in regions of higher growing season temperatures and where hosts were present for longer periods. Composition was primarily structured by geographic region at the global scale, indicating that distance was a dominant driver of community composition. Within Australia, temperature and rainfall seasonality and the amount of growing season rainfall, were the dominant drivers of both richness and composition. Main ConclusionsWe find some support for the idea that foliar fungal species diversity is governed by the same factors as many macro‐organisms (energy availability and evolutionary history) at inter‐continental scales, but also that fungal diversity and composition in the highly seasonal continent of Australia were driven by factors that shape tropical grassy ecosystems, namely climate seasonality and fire.
more »
« less
Environmental variables drive spatial patterns of trophic diversity in mammals
Abstract Understanding environmental drivers of species diversity has become increasingly important under climate change. Different trophic groups (predators, omnivores and herbivores) interact with their environments in fundamentally different ways and may therefore be influenced by different environmental drivers. Using random forest models, we identified drivers of terrestrial mammals' total and proportional species richness within trophic groups at a global scale. Precipitation seasonality was the most important predictor of richness for all trophic groups. Richness peaked at intermediate precipitation seasonality, indicating that moderate levels of environmental heterogeneity promote mammal richness. Gross primary production (GPP) was the most important correlate of the relative contribution of each trophic group to total species richness. The strong relationship with GPP demonstrates that basal‐level resource availability influences how diversity is structured among trophic groups. Our findings suggest that environmental characteristics that influence resource temporal variability and abundance are important predictors of terrestrial mammal richness at a global scale.
more »
« less
- Award ID(s):
- 1932889
- PAR ID:
- 10471918
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 26
- Issue:
- 11
- ISSN:
- 1461-023X
- Format(s):
- Medium: X Size: p. 1940-1950
- Size(s):
- p. 1940-1950
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Functional diversity is an important aspect of biodiversity, but its relationship to species diversity in time and space is poorly understood. Here we compare spatial patterns of functional and taxonomic diversity across marine and terrestrial systems to identify commonalities in their respective ecological and evolutionary drivers. We placed species-level ecological traits into comparable multi-dimensional frameworks for two model systems, marine bivalves and terrestrial birds, and used global speciesoccurrence data to examine the distribution of functional diversity with latitude and longitude. In both systems, tropical faunas show high total functional richness (FR) but low functional evenness (FE) (i.e. the tropics contain a highly skewed distribution of species among functional groups). Functional groups that persist toward the poles become more uniform in species richness, such that FR declines and FE rises with latitude in both systems. Temperate assemblages are more functionally even than tropical assemblages subsampled to temperate levels of species richness, suggesting that high species richness in the tropics reflects a high degree of ecological specialization within a few functional groups and/or factors that favour high recent speciation or reduced extinction rates in those groups.more » « less
-
Mean annual temperature and mean annual precipitation drive much of the variation in productivity across Earth's terrestrial ecosystems but do not explain variation in gross primary productivity (GPP) or ecosystem respiration (ER) in flowing waters. We document substantial variation in the magnitude and seasonality of GPP and ER across 222 US rivers. In contrast to their terrestrial counterparts, most river ecosystems respire far more carbon than they fix and have less pronounced and consistent seasonality in their metabolic rates. We find that variation in annual solar energy inputs and stability of flows are the primary drivers of GPP and ER across rivers. A classification schema based on these drivers advances river science and informs management.more » « less
-
ABSTRACT Assemblages in seasonal ecosystems undergo striking changes in species composition and diversity across the annual cycle. Despite a long‐standing recognition that seasonality structures biogeographic gradients in taxonomic diversity (e.g., species richness), our understanding of how seasonality structures other aspects of biodiversity (e.g., functional diversity) has lagged. Integrating seasonal species distributions with comprehensive data on key morphological traits for bird assemblages across North America, we find that seasonal turnover in functional diversity increases with the magnitude and predictability of seasonality. Furthermore, seasonal increases in bird species richness led to a denser packing of functional trait space, but functional expansion was important, especially in regions with higher seasonality. Our results suggest that the magnitude and predictability of seasonality and total productivity can explain the geography of changes in functional diversity with broader implications for understanding species redistribution, community assembly and ecosystem functioning.more » « less
-
Abstract Changes in trophic niche—the pathways through which an organism obtains energy and nutrients—are a fundamental way in which organisms respond to environmental conditions. But the capacity for species to alter their trophic niches in response to global change, and the ways they do so when able, remain largely unknown.Here we examine food webs in three long‐term and large‐scale experiments to test how resource availability and nutritional requirements interact to determine an organism's trophic niche in the context of one of the largest global trends in land use—the rise in bioenergy production.We use carbon and nitrogen stable isotope analyses to characterize arthropod food webs across three biofuel crops representing a gradient in plant resource richness (corn monocultures, fields dominated by native switchgrass and restored prairie), and to quantify changes in the trophic niche of a widespread generalist ant species across habitats. In doing so, we measure the effects of basal resource richness on food chain length, niche breadth and trophic position. We frame our results in the context of two hypotheses that explain variation in trophic niche—the niche variation hypothesis which emphasizes the importance of resource diversity and ecological opportunity, and the optimal diet hypothesis which emphasizes dietary constraints and the availability of optimal resources.Increasing plant richness lengthened food chains by 10%–20% compared to monocultures. Niche breadths of generalist ants did not vary with resource richness, suggesting they were limited by optimal diet requirements and constraints rather than by ecological opportunity. The ants instead responded to changes in plant richness by shifting their estimated trophic position. In resource‐poor monocultures, the ants were top predators, sharing a trophic position with predatory spiders. In resource‐rich environments, in contrast, the ants were omnivores, relying on a mix of animal prey and plant‐based resources.In addition to highlighting novel ecosystem impacts of alternate bioenergy landscapes, our results suggest that niche breadth and trophic diversification depend more on the presence of optimal resources than on ecological opportunity alone.more » « less
An official website of the United States government
