skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post‐secretory synthesis of a natural analog of iron‐gall ink in the black nectar of Melianthus spp.
Summary The black nectar produced byMelianthusflowers is thought to serve as a visual attractant to bird pollinators, but the chemical identity and synthesis of the black pigment are unknown.A combination of analytical biochemistry, transcriptomics, proteomics, and enzyme assays was used to identify the pigment that givesMelianthusnectar its black color and how it is synthesized. Visual modeling of pollinators was also used to infer a potential function of the black coloration.High concentrations of ellagic acid and iron give the nectar its dark black color, which can be recapitulated through synthetic solutions containing only ellagic acid and iron(iii). The nectar also contains a peroxidase that oxidizes gallic acid to form ellagic acid.In vitroreactions containing the nectar peroxidase, gallic acid, hydrogen peroxide, and iron(iii) fully recreate the black color of the nectar. Visual modeling indicates that the black color is highly conspicuous to avian pollinators within the context of the flower.Melianthusnectar contains a natural analog of iron‐gall ink, which humans have used since at least medieval times. This pigment is derived from an ellagic acid‐Fe complex synthesized in the nectar and is likely involved in the attraction of passerine pollinators endemic to southern Africa.  more » « less
Award ID(s):
2025297
PAR ID:
10404348
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
239
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2026-2040
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary A fewCapsicum(pepper) species produce yellow‐colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown.A combination of analytical biochemistry techniques was used to identify the pigment that givesCapsicum baccatumandCapsicum pubescensnectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment.High concentrations of riboflavin (vitamin B2) give the nectars their intense yellow color. Nectars containing riboflavin generate reactive oxygen species when exposed to light and reduce microbial growth. Visual modeling also indicates that the yellow color is highly conspicuous to bees within the context of the flower. Lastly, field experiments demonstrate that honey bees prefer artificial nectars containing riboflavin.SomeCapsicumnectars contain a yellow‐colored vitamin that appears to play roles in (1) limiting microbial growth, (2) the visual attraction of bees, and (3) as a reward to nectar‐feeding flower visitors (potential pollinators), which is especially interesting since riboflavin is an essential nutrient for brood rearing in insects. These results cumulatively suggest that the riboflavin found in someCapsicumnectars has several functions. 
    more » « less
  2. Summary Pollination syndromes are a key component of flowering plant diversification, prompting questions about the architecture of single traits and genetic coordination among traits. Here, we investigate the genetics of extreme floral divergence between naturally hybridizing monkeyflowers,Mimulus parishii(self‐pollinated) andM. cardinalis(hummingbird‐pollinated).We mapped quantitative trait loci (QTLs) for 18 pigment, pollinator reward/handling, and dimensional traits in parallel sets of F2hybrids plus recombinant inbred lines and generated nearly isogenic lines (NILs) for two dimensional traits, pistil length and corolla size.Our multi‐population approach revealed a highly polygenic basis (n = 190 QTLs total) for pollination syndrome divergence, capturing minor QTLs even for pigment traits with leading major loci. There was significant QTL overlap within pigment and dimensional categories. Nectar volume QTLs clustered with those for floral dimensions, suggesting a partially shared module. The NILs refined two pistil length QTLs, only one of which has tightly correlated effects on other dimensional traits.An overall polygenic architecture of floral divergence is partially coordinated by genetic modules formed by linkage (pigments) and likely pleiotropy (dimensions plus nectar). This work illuminates pollinator syndrome diversification in a model radiation and generates a robust framework for molecular and ecological genomics. 
    more » « less
  3. Nearly 90% of flowering plants depend on animals for reproduction. One of the main rewards plants offer to pollinators for visitation is nectar. Nesocodon mauritianus (Campanulaceae) produces a blood-red nectar that has been proposed to serve as a visual attractant for pollinator visitation. Here, we show that the nectar’s red color is derived from a previously undescribed alkaloid termed nesocodin. The first nectar produced is acidic and pale yellow in color, but slowly becomes alkaline before taking on its characteristic red color. Three enzymes secreted into the nectar are either necessary or sufficient for pigment production, including a carbonic anhydrase that increases nectar pH, an aryl-alcohol oxidase that produces a pigment precursor, and a ferritin-like catalase that protects the pigment from degradation by hydrogen peroxide. Our findings demonstrate how these three enzymatic activities allow for the condensation of sinapaldehyde and proline to form a pigment with a stable imine bond. We subsequently verified that synthetic nesocodin is indeed attractive to Phelsuma geckos, the most likely pollinators of Nesocodon . We also identify nesocodin in the red nectar of the distantly related and hummingbird-visited Jaltomata herrerae and provide molecular evidence for convergent evolution of this trait. This work cumulatively identifies a convergently evolved trait in two vertebrate-pollinated species, suggesting that the red pigment is selectively favored and that only a limited number of compounds are likely to underlie this type of adaptation. 
    more » « less
  4. Summary The evolution of hummingbird pollination is common across angiosperms throughout the Americas, presenting an opportunity to examine convergence in both traits and environments to better understand how complex phenotypes arise. Here we examine independent shifts from bee to hummingbird pollination in the Neotropical spiral gingers (Costus) and address common explanations for the prevalence of transitions from bee to hummingbird pollination.We use floral traits of species with observed pollinators to predict pollinators of unobserved species and reconstruct ancestral pollination states on a well‐resolved phylogeny. We examine whether independent transitions evolve towards the same phenotypic optimum and whether shifts to hummingbird pollination correlate with elevation or climate.Traits predicting hummingbird pollination include small flower size, brightly colored floral bracts and the absence of nectar guides. We find many shifts to hummingbird pollination and no reversals, a single shared phenotypic optimum across hummingbird flowers, and no association between pollination and elevation or climate.Evolutionary shifts to hummingbird pollination inCostusare highly convergent and directional, involve a surprising set of traits when compared with other plants with analogous transitions and refute the generality of several common explanations for the prevalence of transitions from bee to hummingbird pollination. 
    more » « less
  5. Nectar contains antimicrobial constituents including hydrogen peroxide, yet it is unclear how widespread nectar hydrogen peroxide might be among plant species or how effective it is against common nectar microbes.Here, we surveyed 45 flowering plant species across 23 families and reviewed the literature to assess the field‐realistic range of nectar hydrogen peroxide (Aim 1). We experimentally explored whether plant defense hormones increase nectar hydrogen peroxide (Aim 2). Further, we tested the hypotheses that variation in microbial tolerance to peroxide is predicted by the microbe isolation environment (Aim 3); increasing hydrogen peroxide in flowers alters microbial abundance and community assembly (Aim 4), and that the microbial community context affects microbial tolerance to peroxide (Aim 5).Peroxide in sampled plants ranged from undetectable toc3000 μM, with 50% of species containing less than 100 μM. Plant defensive hormones did not affect hydrogen peroxide in floral nectar, but enzymatically upregulated hydrogen peroxide significantly reduced microbial growth.Together, our results suggest that nectar peroxide is a common but not pervasive antimicrobial defense among nectar‐producing plants. Microbes vary in tolerance and detoxification ability, and co‐growth can facilitate the survival and growth of less tolerant species, suggesting a key role for community dynamics in the microbial colonization of nectar. 
    more » « less